精英家教网 > 高中数学 > 题目详情

【题目】已知点,动圆与直线切于点,过与圆相切的两直线相交于点,则点的轨迹方程为( )

A. B.

C. D.

【答案】A

【解析】

先由题意画出图形,可见C是PMN的内切圆,则由切线长定理得|MA|=|MB|、|ND|=|NB|、|PA|=|PD|;此时求|PM|﹣|PN|可得定值,即满足双曲线的定义;然后求出a、b,写出方程即可(要注意x的取值范围).

由题意画图如下

可见|MA|=|MB|=4,|ND|=|NB|=2,且|PA|=|PD|,

那么|PM|﹣|PN|=(|PA|+|MA|)﹣(|PD|+|ND|)=|MA|﹣|ND|=4﹣2=2<|MN|,

所以点P的轨迹为双曲线的右支(右顶点除外),

又2a=2,c=3,则a=1,b2=9﹣1=8,

所以点P的轨迹方程为(x>1).

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知正方形和矩形所在的平面互相垂直, ,M是线段的中点.

Ⅰ)求证:∥平面

Ⅱ)求证: 平面

() 点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+b)(其中a,b为常数,且a>0,a≠1)的图象经过点A(﹣2,0),B(1,2).
(1)求f(x)的解析式;
(2)若函数g(x)=( 2x﹣( x﹣1,x∈[0,+∞),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ln(x+m)
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=(x2﹣2x﹣3)的单调减区间是(  )
A.(3,+∞)
B.(1,+∞)
C.(﹣∞,1)
D.(﹣∞,﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(0)=2和f(x+1)﹣f(x)=2x﹣1对任意实数x都成立.
(1)求函数f(x)的解析式;
(2)当t∈[﹣1,3]时,求y=f(2t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面几何中,与三角形的三条边所在直线的距离相等的点有且只有四个.类似的:在立体几何中,与正四面体的六条棱所在直线的距离相等的点 ( )

A. 有且只有一个 B. 有且只有三个 C. 有且只有四个 D. 有且只有五个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为(  )

A.0,0
B.1,1
C.0,1
D.1,0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下资料是一位销售经理收集到的每年销售额y(千元)和销售经验x(年)的关系:

销售经验x/年

1

3

4

4

6

8

10

10

11

13

年销售额y/千元

80

97

92

102

103

111

119

123

117

136

(1)依据这些数据画出散点图并作直线=78+4.2x,计算

(2)依据这些数据求回归直线方程并据此计算

(3)比较(1) (2)中的残差平方和的大小.

查看答案和解析>>

同步练习册答案