精英家教网 > 高中数学 > 题目详情
已知函数的最大值为正实数,集合,集合
(1)求
(2)定义的差集:
均为整数,且取自的概率,取自 的概率,写出的二组值,使
(3)若函数中, 是(2)中较大的一组,试写出在区间[,n]上的最    大值函数的表达式。
(1)   (2) 
(3) 
(1)∵,配方得,由得最大值。    3分
。   6分
(2)要使。可以使①中有3个元素,中有2个元素,  中有1个元素。则。     9分
中有6个元素,中有4个元素, 中有2个元素。则    12分
(3)由(2)知     13分
       18分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如果是函数的一个极值,称点是函数的一个极值点.已知函数
(1)若函数总存在有两个极值点,求所满足的关系;
(2)若函数有两个极值点,且存在,求在不等式表示的区域内时实数的范围.
(3)若函数恰有一个极值点,且存在,使在不等式表示的区域内,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为元(其中为常数,且),设该工厂每件玩具的出厂价为元(),根据市场调查,日销售量与为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.
(Ⅰ)求该工厂的日利润(元)与每件玩具的出厂价元的函数关系式;
(Ⅱ)当每件玩具的日售价为多少元时,该工厂的利润最大,并求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知是偶函数.
(1)求的值;
(2)证明:对任意实数,函数的图象与直线最多只有一个交点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(|x|-b)2+c,函数g(x)=x+m,
(1)当b=2,m=-4时,f(x)g(x)恒成立,求实数c的取值范围;
(2)当c=-3,m=-2时,方程f(x)=g(x)有四个不同的解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地有三家工厂,分别位于矩形ABCD的顶点AB,及CD的中点P处,已知km, ,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且AB与等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为ykm。
(I)按下列要求写出函数关系式:
①设,将表示成的函数关系式;
②设,将表示成的函数关系式。
(Ⅱ)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

造船厂年造船量20艘,造船艘产值函数为(单位:万元),成本函数(单位:万元),又在经济学中,函数的边际函数定义为
(1)求利润函数及边际利润函数(利润=产值—成本)
(2)问年造船量安排多少艘时,公司造船利润最大
(3)边际利润函数的单调递减区间

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形上规划出一块长方形地面建造公园,公园一边落在CD上,但不得越过文物保护区的EF.问如何设计才能使公园占地面积最大,并求这最大面积.( 其中AB=200m,BC=160m,AE=60m,AF=40m.)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的反函数是【   】.
A.B.
C.D.

查看答案和解析>>

同步练习册答案