精英家教网 > 高中数学 > 题目详情
三棱锥P-ABC中,PA=PB=PC=AC=1,△ABC是等腰直角三角形,∠ABC=90°.若E为PC中点,则BE与平面PAC所成的角的大小等于(  )
分析:先作PO⊥平面ABC,垂足为O,根据条件可证得点O为三角形ABC的外心,从而确定点O为AC的中点,然后证明BO是面PAC的垂线,从而得到∠BEO为BE与平面PAC所成的角,在直角三角形BOE中求解即可.
解答:解:作PO⊥平面ABC,垂足为O
则∠POA=∠POB=∠POC=90°,
而PA=PB=PC,PO是△POA、△POB、△POC的公共边
∴△POA≌△POB≌△POC
∴AO=BO=CO,则点O为三角形ABC的外心
∵△ABC是等腰直角三角形,∠ABC=90°
∴点O为AC的中点,则BO⊥AC
而PO⊥BO,PO∩AC=O
∴BO⊥平面PAC,连接OE
∴∠BEO为BE与平面PAC所成的角
∵点O为AC的中点,E为PC中点,PA=PB=PC=AC=1,ABC是等腰直角三角形,∠ABC=90°
∴OE为中位线,且OE=
1
2
,BO=
1
2

又∵∠BOE=90°
∴∠BEO=45°即BE与平面PAC所成的角的大小为45°
故选B.
点评:本题主要考查了三角形的外心的概念,以及直线与平面所成角和三角形全等等有关知识,同时考查了推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,△PAB是等边三角形,∠PAC=∠PBC=90°.
(1)证明:AB⊥PC;
(2)若PC=4,且平面PAC⊥平面PBC,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=
π2
,PA=2,AB=AC=4,点D、E、F分别为BC、AB、AC的中点.
(I)求证:EF⊥平面PAD;
(II)求点A到平面PEF的距离;
(III)求二面角E-PF-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)当k=
12
时,求直线PA与平面PBC所成角的大小;
(Ⅱ)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PC⊥平面ABC,△ABC为正三角形,D、E、F分别是BC,PB,CA的中点.
(1)证明平面PBF⊥平面PAC;
(2)判断AE是否平行于平面PFD,并说明理由;
(3)若PC=AB=2,求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是
6
6
6
6

查看答案和解析>>

同步练习册答案