精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若,求的单调区间;

(2)若函数存在唯一的零点,且,则的取值范围.

【答案】(1) 函数上单调递增,上单调递减.(2) .

【解析】

1)先求得函数的导数,然后利用导数的正负求出函数的单调区间.2)先令,得,构造函数,对分成三类,利用导数研究函数的单调区间,根据函数存在唯一的零点,且,列不等式,解不等式求得的取值范围.

(1)

,解得.

时,;当时,.

故函数上单调递增,上单调递减.

(2)令,可得,令,且

本题等价于函数存在唯一的零点,且 .

时,,解得,函数有两个零点,不符合题意,

时,,令,解得

时,函数上单调递增,上单调递减,

,又,所以函数存在负数零点,不符合题意

时,函数上单调递减,上单调递增,

,故,解得

综上,的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆,如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于两点A,B,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=﹣3于点D(﹣3,m).

(1)求m2+k2的最小值;

(2)若|OG|2=|OD||OE|,求证:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的方程为,曲线是以坐标原点为顶点,直线为准线的抛物线.以坐标原点为极点,轴非负半轴为极轴建立极坐标系.

(1)分别求出直线与曲线的极坐标方程:

(2)点是曲线上位于第一象限内的一个动点,点是直线上位于第二象限内的一个动点,且,请求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某中学学生对数学学习的情况,从该校抽了名学生,分析了这名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:

1)求频率分布直方图中的值;

2)根据频率分布直方图估计该组数据的中位数(精确到);

3)在这名学生的数学成绩中,从成绩在的学生中任选人,求次人的成绩都在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,过点的直线lE交于AB两点.l过点F时,直线l的斜率为,当l的斜率不存在时,.

1)求椭圆E的方程.

2)以AB为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点分别为,点为坐标原点).

(1)求抛物线的方程;

(2)过点的直线交的下半部分于点,交的左半部分于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数在区间上的最大值;

(Ⅱ)设在(0,2)内恰有两个极值点,求实数的取值范围;

(Ⅲ)设,方程在区间有解,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

同步练习册答案