如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.
(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.
(1)详见解析,(2)详见解析.
解析试题分析:(1)证明线线平行,一般思路为利用线面平行的性质定理与判定定理进行转化. 因为四边形ABCD是矩形,所以AB∥CD,因为平面CDEF,平面CDEF,所以AB∥平面CDEF.因为平面ABFE,平面平面,所以AB∥EF.(2)证明面面垂直,一般利用其判定定理证明,即先证线面垂直. 因为DE⊥平面ABCD,平面ABCD,所以DE⊥BC.因为BC⊥CD,,平面CDEF,所以BC⊥平面CDEF.因为BC平面BCF,平面BCF⊥平面CDEF.
【证】(1)因为四边形ABCD是矩形,所以AB∥CD,
因为平面CDEF,平面CDEF,
所以AB∥平面CDEF. 4分
因为平面ABFE,平面平面,
所以AB∥EF. 7分
(2)因为DE⊥平面ABCD,平面ABCD,
所以DE⊥BC. 9分
因为BC⊥CD,,平面CDEF,
所以BC⊥平面CDEF. 12分
因为BC平面BCF,平面BCF⊥平面CDEF. 14分
考点:线面平行与垂直关系
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.
(1)若点M是棱PC的中点,求证:PA∥平面BMQ;
(2)若二面角M—BQ—C为30°,设PM=tMC,试确定t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点.
⑴求证:平面PAD⊥面PBD;
⑵当Q在什么位置时,PA∥平面QBD?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°.
(1)求证:⊥平面;
(2)求二面角的余弦值;
(3)求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com