精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=cosx•sin(x+$\frac{π}{6}$),则函数f(x)的最小正周期为π.

分析 f(x)解析式利用积化和差公式变形,找出ω的值,代入周期公式即可求出最小正周期.

解答 解:f(x)=cosx•sin(x+$\frac{π}{6}$)=$\frac{1}{2}$[sin(x+$\frac{π}{6}$+x)+sin(x+$\frac{π}{6}$-x)]=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{1}{4}$,
∵ω=2,
∴T=$\frac{2π}{2}$=π,
故答案为:π.

点评 此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex+ax-1 (a∈R).
(I)求函数f(x)的单调区间;
(II)设函数g(x)=$\frac{{e}^{2}({x}^{2}-a)}{f(x)-ax+1}$,当g(x)有两个极值点x1,x2(x1<x2)时,总有λ[(2x1-x12)e${\;}^{2-{x}_{1}}$-a]-x2g(x1)≥0,求实数λ的值或取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若四面体的三视图如图所示,则该四面体的外接球表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点P在曲线ρcosθ+2ρsinθ=3上,其中0≤θ≤$\frac{π}{4}$,ρ>0,则点P轨迹是(  )
A.直线x+2y-3=0B.以(3,0)为端点的射线
C.圆(x-2)2+y2=1D.以(1,1),(3,0)为端点的线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,PA=CD=AD=2AB=2,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE∥面PAD;
(2)求直线BE与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合A={x|x2-2x<0},函数f(x)=$\sqrt{x-1}$的定义域为集合B,则A∩B等于(  )
A.(0,1)B.[0,1)C.(1,2)D.[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在下列均为正数的表格中,每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x+y+z=16.
1x3
ya6
48z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=cos(2x-$\frac{π}{4}$),x∈R,则f(x)的其中一个对称中心是(  )
A.(-$\frac{π}{8}$,0)B.(-$\frac{π}{4}$,0)C.($\frac{π}{8}$,0)D.($\frac{π}{4}$,0)

查看答案和解析>>

同步练习册答案