精英家教网 > 高中数学 > 题目详情
等差数列{an}中,an>0,公差为d>0,则有a4•a6>a3•a7,类比上述性质,在等比数列{bn}中,若bn>0,q>1,写出b5,b7,b4,b8的一个不等关系
b4+b8>b5+b7
b4+b8>b5+b7
分析:类比等差数列{an}与等比数列{bn}均为各项为正数的递增数列,等差数列中的“和”运算类比等比数列中“积”运算,由此即可得到答案.
解答:解:在等差数列{an}中,an>0,公差为d>0,所以{an}为各项为正数的递增数列,
由于4+6=3+7时有a4•a6>a3•a7
而在等比数列{bn}中,bn>0,q>1,则{bn}为各项为正数的递增数列,
由于4+8=5+7,所以应有b4+b8>b5+b7
∴b4+b8>b5+b7
故答案为:b4+b8>b5+b7
点评:本题考查类比推理,考查学生的观察、分析、类比能力,考查推理论证能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案