精英家教网 > 高中数学 > 题目详情

【题目】设函数是定义在上的偶函数,且对任意的恒成立,且当时,.

1)求证:是以2为周期的函数(不需要证明2的最小正周期);

2)对于整数,当时,求函数的解析式;

3)对于整数,记有两个不等的实数根},求集合.

【答案】1)证明见解析;(2;(3

【解析】

1)利用可得结论;
2)先求出时,,设,则,根据是以2为周期的函数,即可求解.
3)将方程转化为二次函数,利用二次函数根的分布求的取值集合.

解:(1)因为
所以:是以2为周期的函数;
2时,,函数是定义在上的偶函数
时,
时,
是以2为周期的函数,即
,则


3)当,且时,方程化简为


,使方程上有两个不相等的实数根,



解得
时,
∴集合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位长度后,再将所得的图象向下平移一个单位长度得到函数的图象,且的图象与直线相邻两个交点的距离为,若对任意恒成立,则的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的100名顾客进行统计,得到如下的列联表。

40岁以下

40岁以上

合计

使用微信支付

35

15

50

未使用微信支付

20

30

50

合计

55

45

100

参考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

参照附表,则所得到的统计学结论正确的是( )

A. 的把握认为“使用微信支付与年龄有关”

B. 的把握认为“使用微信支付与年龄有关”

C. 在犯错误的概率不超过的前提下,认为“使用微信支付与年龄有关”

D. 在犯错误的概率不超过的前提下,认为“使用微信支付与年龄无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

(1)若用线性回归模型拟合的关系,求关于的线性回归方程;

(2)用二次函数回归模型拟合的关系,可得回归方程:,经计算二次函数回归模型和线性回归模型的相关指数分别约为,请用说明选择哪个回归模型更合适,并用此模型预测超市应支出多少万元广告费,能获得最大的销售额?最大的销售额是多少?(精确到个位数)

参数数据及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.

(1)试求椭圆的标准方程;

(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则之积是否为定值?若是,求出该定值;若不是,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃),对某种鸡的时段产蛋量(单位: )和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

17.40

82.30

3.6

140

9.7

2935.1

35.0

其中.

1)根据散点图判断, 哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)

2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;

3)已知时段投入成本的关系为,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?

附:①对于一组具有有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为 轴,直线轴于点,为椭圆上的动点,的面积最大值为1.

(1)求椭圆的方程;

(2)如图,过点作两条直线与椭圆分别交于,且使轴,问四边形的两条对角线的交点是否为定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C=1a>0b>0)的离心率与双曲线=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin·x+cos·yl=0相切(为常数).

1)求椭圆C的方程;

2)若过点M30)的直线与椭圆C相交TAB两点,设P为椭圆上一点,且满足O为坐标原点),当时,求实数t取值范围.

查看答案和解析>>

同步练习册答案