精英家教网 > 高中数学 > 题目详情

【题目】已知函数.(为自然对数的底数)

(1)设

①若函数处的切线过点,求的值;

②当时,若函数上没有零点,求的取值范围.

(2)设函数,且,求证:当时,.

【答案】(1) (2)见解析

【解析】试题分析:(1)①由可得在处的切线方程,代入点

②当,可得,讨论时函数的单调性进而研究零点即可;

(2)等价于,求得求最值即可证得.

试题解析:

(1)①由题意,得

所以函数处的切线斜率,又

所以函数处的切线方程

将点代入,得

②当,可得,因为,所以

时,,函数上单调递增,而

所以只需,解得,从而

时,由,解得

时,单调递减;当时,

单调递增.所以函数上有最小值为

,解得,所以. 综上所述,

(2)由题意,

等价于

,且

,则

因为, 所以,所以导数上单调递增,

于是

从而函数上单调递增,即

即当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆M:长轴上的两个顶点为,点P为椭圆M上除外的一个动点,若,则动点Q在下列哪种曲线上运动( )

A. B. 椭圆 C. 双曲线 D. 抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系.已知直线的参数方程是是参数),圆的极坐标方程为.

(1)求圆心的直角坐标;

(2)由直线上的点向圆引切线,并切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的下顶点为,右顶点为,离心率,抛物线的焦点为是抛物线上一点,抛物线在点处的切线为,且.

(1)求直线的方程;

(2)若与椭圆相交于两点,且,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交管部门为宣传新交规举办交通知识问答活动,随机对该市岁的人群抽样了人,回答问题统计结果如图表所示:

分组

回答正确的人数

回答正确的人数占本组的频率

(1)分别求出的值;

(2)从第组回答正确的人中用分层抽样方法抽取人,则第组每组应各抽取多少人?

(3)在(2)的前提下,决定在所抽取的人中随机抽取人颁发幸运奖,求:所抽取的人中至少有一个第组的人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角

(1)若问:观察者离墙多远时,视角最大?

(2)若变化时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为,离心率.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(其中).

(1)求函数的单调区间;

(2)当时,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为,(t为参数),在以原点O为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为两点的极坐标分别为.

(1)求圆的普通方程和直线的直角坐标方程;

(2)是圆上任一点,求面积的最小值.

查看答案和解析>>

同步练习册答案