精英家教网 > 高中数学 > 题目详情

【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )

A. B. C. D.

【答案】C

【解析】

设包含7块板的正方形边长为,其面积为,计算雄鸡的鸡尾面积为,利用几何概型概率计算公式得解。

设包含7块板的正方形边长为,其面积为

则雄鸡的鸡尾面积为标号为的板块,其面积为

所以在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,求的极值;

(2)证明:.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名,其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了频率分布直方图:

(1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

(2)若学校规定评估成绩超过分的毕业生可参加三家公司的面试.

(ⅰ)用样本平均数作为的估计值,用样本标准差作为的估计值,请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;

(ⅱ)若三家公司每家都提供甲、乙、丙三个岗位,岗位工资表如下:

公司

甲岗位

乙岗位

丙岗位

9600

6400

5200

9800

7200

5400

10000

6000

5000

李华同学取得了三个公司的面试机会,经过评估,李华在三个公司甲、乙、丙三个岗位的面试成功的概率均为,李华准备依次从三家公司进行面试选岗,公司规定:面试成功必须当场选岗,且只有一次机会.李华在某公司选岗时,若以该岗位工资与未进行面试公司的工资期望作为抉择依据,问李华可以选择公司的哪些岗位?

并说明理由.

附:,若随机变量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为,点M的极坐标为,若直线l过点P,且倾斜角为,圆CM为圆心,1为半径.

1)求直线l的参数方程和圆C的极坐标方程.

2)设直线l与圆C相交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的个数是(  )

①若“p∨q”为真命题,则“p∧q”为真命题;

②“a∈(0,+∞),函数y=在定义域内单调递增”的否定;

③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;

④“x∈R,≥0”的否定为“R,<0”.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.

(1)求证:AF∥平面PEC

(2)求证:平面PCD⊥平面PEC;

(3)求三棱锥C-BEP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)求曲线在点处的切线方程;

)当时,求证:函数有且仅有一个零点;

)当时,写出函数的零点的个数.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如图.

现在上述图(3)中随机选取一个点,则此点取自阴影部分的概率为_________.

查看答案和解析>>

同步练习册答案