精英家教网 > 高中数学 > 题目详情
9、如图,正方体ABCD-A1B1C1D1中,E、F分别是棱C1C与BC的中点,则直线EF与直线D1C所成角的大小是
60°
分析:由题意得EF∥BC1∥AD1,可得直线EF与直线D1C所成角的大小和直线AD1与直线CD1所成角的大小相等,再根据立方体的结构特征得到直线AD1与直线CD1所成角的大小为60°,进而得到答案.
解答:解:因为E、F分别是棱C1C与BC的中点,
所以EF∥BC1∥AD1
所以直线EF与直线D1C所成角的大小和直线AD1与直线CD1所成角的大小相等.
因为ABCD-A1B1C1D1是正方体,
所以直线AD1与直线CD1所成角的大小为60°,
所以直线EF与直线D1C所成角的大小为60°.
故答案为60°.
点评:解决此类问题的关键是熟悉求异面直线所成角的方法即平移直线或作其中一条直线的中位线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案