精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

【答案】(1) xy-2=0;(2) a0时,函数f(x)无极值;当a>0时,函数f(x)xa处取得极小值aaln a无极大

【解析】

解:函数f(x)的定义域为(0,+∞)f′(x)1.

(1)a2时,f(x)x2ln x

f′(x)1(x>0)

因而f(1)1f′(1)=-1

所以曲线yf(x)在点A(1f(1))处的切线方程为y1=-(x1),即xy20.

(2)f′(x)1x>0知:

a≤0时,f′(x)>0,函数f(x)(0,+∞)上的增函数,函数f(x)无极值;

a>0时,由f′(x)0,解得xa

又当x∈(0a)时,f′(x)<0

x∈(a,+∞)时,f′(x)>0

从而函数f(x)xa处取得极小值,且极小值为f(a)aaln a,无极大值.

综上,当a≤0时,函数f(x)无极值;

a>0时,函数f(x)xa处取得极小值aaln a,无极大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,空气污染越严重.PM2.5的浓度与空气质量类别的关系如下表所示:

从甲城市2016年9月份的30天中随机抽取15天,这15天的PM2.5的日均浓度指数数据如茎叶图所示.

(1)试估计甲城市在2016年9月份的30天中,空气质量类别为优或良的天数;

(2)从甲城市的这15个监测数据中任取2个,设X是空气质量类别为优或良的天数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)

(1)根据以上数据完成下面的2×2列联表:

主食 蔬菜

主食 肉类

总计

50岁以下

50岁以上

总计

(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.

附参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线l的参数方程为:为参数).

(1)求圆和直线l的极坐标方程;

(2)点的极坐标为,直线l与圆相交于AB,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},其前n项和为Sn
(1)若{an}是公差为d(d>0)的等差数列,且{ }也为公差为d的等差数列,求数列{an}的通项公式;
(2)若数列{an}对任意m,n∈N* , 且m≠n,都有 =am+an+ ,求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+ )(ω>0)的最小正周期为π,则该函数的图象(
A.关于直线x= 对称
B.关于点( ,0)对称
C.关于直线x=﹣ 对称
D.关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C的对边分别是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求证:△ABC为等腰三角形
(2)若△ABC的面积为8 .且sinB= ,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果输入,则输出的的值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,武汉市出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.武汉市环保部门就是否赞成禁放烟花爆竹,对400位老年人和中青年市民进行了随机问卷调查,结果如下表:

赞成禁放

不赞成禁放

合计

老年人

60

140

200

中青年人

80

120

200

合计

140

260

400

附:K2=

P(k2>k0

0.050

0.025

0.010

k0

3.841

5.024

6.635


(1)有多大的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关?请说明理由;
(2)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解他们春节期间在烟花爆竹上消费的情况.假设一位老年人花费500元,一位中青年人花费1000元,用X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案