【题目】在ABC中,角A,B,C所对的边分別为a,b,c,且asinAcosC+csinAcosA=c.
(1)若c=1,sinC=,求ABC的面积S;
(2)若D是AC的中点,且cosB=,BD=,求ABC的三边长.
科目:高中数学 来源: 题型:
【题目】黄金分割比例具有严格的比例性,艺术性,和谐性,蕴含着丰富的美学价值.这一比值能够引起人们的美感,被称为是建筑和艺术中最理想的比例.我们把离心率的椭圆称为“黄金椭圆”,则以下四种说法中正确的个数为( )
①椭圆是“黄金椭圆;
②若椭圆,的右焦点且满足,则该椭圆为“黄金椭圆”;
③设椭圆,的左焦点为F,上顶点为B,右顶点为A,若,则该椭圆为“黄金椭圆”;
④设椭圆,,的左右顶点分别A,B,左右焦点分别是,,若,,成等比数列,则该椭圆为“黄金椭圆”;
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点,直线与y轴交于点P.且与椭圆交于A,B两点.A为椭圆的右顶点,B在x轴上的射影恰为。
(1)求椭圆E的方程;
(2)M为椭圆E在第一象限部分上一点,直线MP与椭圆交于另一点N,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是梯形,,,是正三角形,为的中点,平面平面.
(1)求证:平面;
(2)在棱上是否存在点,使得二面角的余弦值为?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校在学校内招募了名男志愿者和名女志愿者,将这名志愿者的身高编成如茎叶图所示(单位:),若身高在以上(包括)定义为“高个子”,身高在以下(不包括)定义为“非高个子”。
(Ⅰ)根据数据分别写出男、女两组身高的中位数;
(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则各抽几人?
(Ⅲ)在(Ⅱ)的基础上,从这人中选人,那么至少有一人是“高个子”的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将边长为的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列四个命题:①;②异面直线与所成的角为;③二面角余弦值为;④三棱锥的体积是.其中正确命题的序号是___________.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的参数方程为(为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线,,所围成图形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com