精英家教网 > 高中数学 > 题目详情

【题目】水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,一个水斗从点A(3,-3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t秒后,水斗旋转到P点,设P的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).则下列叙述错误的是(  )

A.R=6,ω=,φ=-

B.当t∈[35,55]时,点P到x轴的距离的最大值为6

C.当t∈[10,25]时,函数y=f(t)单调递减

D.当t=20时,|PA|=6

【答案】C

【解析】

求出函数的解析式,再分析选项,即可得出结论.

由题意,R==6,T=60=,∴ω=,当t=0时,y=f(t)=-3,

代入可得-3=6sin φ,∵|φ|<,∴φ=-.故A正确;

f(t)=6sin,当t∈[35,55]时, t-

∴点P到x轴的距离的最大值为6,正确;

当t∈[10,25]时, t-,函数y=f(t)不单调,不正确;

当t=20时, t-,P的纵坐标为6,|PA|==6,正确,

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直四棱柱中,底面是菱形,分别是线段的中点.

1)求证:

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCDPDAD2.

(1)求该四棱锥P-ABCD的表面积和体积;

(2)求该四棱锥P-ABCD内切球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,其离心率椭圆右焦点的直线与椭圆交于两点.

1)求椭圆的方程;

2)是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形是矩形,平面分别是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求平面与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.

(Ⅰ)理论上,小球落入4号容器的概率是多少?

(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定

1)求点M的坐标;

2)应如何设计,才能使折线段赛道MNP最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数满足:对于任意实数xy,总有恒成立,我们称类余弦型函数.

已知类余弦型函数,且,求的值;

的条件下,定义数列23的值.

类余弦型函数,且对于任意非零实数t,总有,证明:函数为偶函数,设有理数满足,判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

同步练习册答案