精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013
分析:函数y=f(x+1)的图象关于直线x=-1对称⇒函数y=f(x)的图象关于y轴对称⇒y=f(x)为R上的偶函数,从而可求得f(3)=0,继而得函数y=f(x)是以6为周期的函数,从而可得f(2013)的值.
解答:解:∵函数y=f(x+1)的图象关于直线x=-1对称,
∴函数y=f(x)的图象关于直线x=0,即y轴对称,
∴y=f(x)为R上的偶函数,又对任意x∈R,均有f(x+6)=f(x)+f(3),
令x=-3得:f(6-3)=f(-3)+f(3)=2f(3),
∴f(3)=0,
∴f(x+6)=f(x),
∴函数y=f(x)是以6为周期的函数,
∴f(2013)=f(335×6+3)=f(3)=0,
故选:A.
点评:本题考查抽象函数及其应用,着重考查函数的奇偶性与周期性的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

同步练习册答案