精英家教网 > 高中数学 > 题目详情

过点M(-2,0)作直线l交双曲线x2-y2=1于A、B两点,以OA、OB的邻边作平行四边形OAPB.

(1)求P点的轨迹方程;

(2)是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程;若不存在,说明理由.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过点M(2,0)作圆x2+y2=1的两条切线MA,MB(A,B为切点),则
MA
MB
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知两点A(-
5
,0)、B(
5
,0),△ABC的内切圆的圆心在直线x=2上移动.
(Ⅰ)求点C的轨迹方程;
(Ⅱ)过点M(2,0)作两条射线,分别交(Ⅰ)中所求轨迹于P、Q两点,且
MP
MQ
=0,求证:直线PQ必过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2
3
,离心率为
2
2
,其右焦点为F,过点B(0,b)作直线交椭圆于另一点A.
(Ⅰ)若
AB
BF
=-6
,求△ABF外接圆的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆N:
x2
a2
+
y2
b2
=
1
3
相交于两点G、H,设P为N上一点,且满足
OG
+
OH
=t
OP
(O为坐标原点),当|
PG
-
PH
|<
2
5
3
时,求实数t的取值范围.

查看答案和解析>>

同步练习册答案