精英家教网 > 高中数学 > 题目详情
15、在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BD•BC.拓展到空间,在四面体A-BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在△BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为
(S△ABC2=S△BOC.S△BDC
分析:这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,(如图所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD•BC,我们可以类比这一性质,推理出若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则(S△ABC2=S△BOC.S△BDC
解答:解:由已知在平面几何中,
若△ABC中,AB⊥AC,AE⊥BC,E是垂足,
则AB2=BD•BC,
我们可以类比这一性质,推理出:
若三棱锥A-BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,
则(S△ABC2=S△BOC.S△BDC
故答案为:(S△ABC2=S△BOC.S△BDC
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源:湖南省长沙一中2012届高三上学期第一次月考数学文科试题 题型:022

在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A-BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为________.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年湖南汝城第一中学、长沙实验中学高三11月联考理数学卷(解析版) 题型:填空题

在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为            

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建省高二3月月考数学文卷 题型:填空题

在平面几何里有射影定理:“设△ABC的两边,D是A点在BC边上的射影,则.”。拓展到空间,若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,点O是顶点A在底面BCD上的射影且O点在△BCD内,类比平面上三角形的射影定理,△ABC、△BOC、△BCD三者的面积关系是                      

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省珠海二中高二(下)第一次段考数学试卷(解析版) 题型:填空题

在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC边上的射影,则AB2=BD•BC.拓展到空间,在四面体A-BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在△BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为   

查看答案和解析>>

同步练习册答案