【题目】在直角坐标系中,曲线C的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线C的参数方程和直线的直角坐标方程;
(2)若直线与轴和y轴分别交于A,B两点,P为曲线C上的动点,求△PAB面积的最大值.
科目:高中数学 来源: 题型:
【题目】椭圆上动点到两个焦点的距离之和为4,且到右焦点距离的最大值为.
(1)求椭圆的方程;
(2)设点为椭圆的上顶点,若直线与椭圆交于两点(不是上下顶点).试问:直线是否经过某一定点,若是,求出该定点的坐标;若不是,请说明理由;
(3)在(2)的条件下,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为2的菱形,,,平面平面,点为棱的中点.
(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;
(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线,,,与曲线分别交异于极点的四点,,,.
()若曲线关于曲线对称,求的值,并把曲线和化成直角坐标方程.
()求,当时,求的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线的方程为,.
(1)若直线在轴、轴上的截距之和为-1,求坐标原点到直线的距离;
(2)若直线与直线:和:分别相交于、两点,点到、两点的距离相等,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年11月2日,中国药品监督管理局批准了治疗阿尔茨海默病(老年痴呆症)新药GV-971的上市申请,这款新药由我国科研人员研发,我国拥有完全知识产权.据悉,该款药品为胶囊,从外观上看是两个半球和一个圆柱组成,其中上半球是胶囊的盖子,粉状药物储存在圆柱及下半球中.胶囊轴截面如图所示,两头是半圆形,中间区域是矩形,其周长为50毫米,药物所占的体积为圆柱体积和一个半球体积之和.假设的长为毫米.(注:,,其中为球半径,为圆柱底面积,为圆柱的高)
(1)求胶囊中药物的体积关于的函数关系式;
(2)如何设计与的长度,使得最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的两个顶点为,,平面内P,Q同时满足;;.
求顶点A的轨迹E的方程;
过点作两条互相垂直的直线,,直线,被点A的轨迹E截得的弦分别为,,设弦,的中点分别为M,试问:直线MN是否恒过一个顶点?若过定点,请求出该顶点,若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com