精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求的极大值点;

2)当时,若过点存在3条直线与曲线相切,求t的取值范围.

【答案】1)见解析;(2.

【解析】

1)先求导数,求出导函数的零点,安照三种情况讨论的极大值点;

2)设切点,利用该点的导数等于切线斜率、切线过点两个条件整理得到关于的方程,进一步研究函数的取值情况.

解:(1

,得

,则当时,

时,

上单调递增,在上单调递减,

此时的极大值点为

,则当时,

时,

上单调递增,在上单调递减,

此时的极大值点为

上单调递增,无极值.

2)设过点的直线与曲线相切于点

,且切线斜率

所以切线方程为

因此,整理得

构造函数

若过点存在3条直线与曲线相切等价于有三个不同的零点的关系如下表:

+

0

0

+

极大值

极小值

所以的极大值为,极小值为

要使有三个解,即,解得

因此,当过点存在3条直线与曲线相切时,

t的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场为提高服务质量,随机调查了60名男顾客和80名女顾客,每位顾客均对该商场的服务给出满意或不满意的评价,得到下面不完整的列联表:

满意

不满意

合计

男顾客

50

女顾客

50

合计

1)根据已知条件将列联表补充完整;

2)能否有的把握认为男、女顾客对该商场服务的评价有差异?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线轴交于点,直线与直线的交点为.

1)证明:点恒在椭圆.

2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线C1a0b0)右焦点F2作双曲线一条渐近线的垂线,垂足为P,与双曲线交于点A,若 ,则双曲线C的渐近线方程为(

A.y=±xB.y=±xC.y=±2xD.y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为

1)写出曲线C1C2的直角坐标方程;

2)已知P为曲线C2上的动点,过点P作曲线C1的切线,切点为A,求|PA|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极大值点;

2)当时,若过点存在3条直线与曲线相切,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E,过右焦点F的直线l与椭圆E交于AB两点(AB两点不在x轴上),椭圆EAB两点处的切线交于P,点P在定直线.

1)记点,求过点与椭圆E相切的直线方程;

2)以为直径的圆过点F,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.为自然对数的底数)

1)当时,设,求函数上的最值;

2)当时,证明:,其中表示中较小的数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Snnn+2)(nN*).

1)求数列{an}的通项公式;

2)设bn,求数列{bn}的前n项和Tn.

查看答案和解析>>

同步练习册答案