A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 方程$\frac{{x}^{2}}{k+1}$+$\frac{{y}^{2}}{1-k}$=1表示椭圆,则$\left\{\begin{array}{l}{k+1>0}\\{1-k>0}\\{k+1≠1-k}\end{array}\right.$,解得k范围即可判断出结论.
解答 解:方程$\frac{{x}^{2}}{k+1}$+$\frac{{y}^{2}}{1-k}$=1表示椭圆,则$\left\{\begin{array}{l}{k+1>0}\\{1-k>0}\\{k+1≠1-k}\end{array}\right.$,解得-1<k<1,k≠0,
因此“-1<k<1”是“方程$\frac{{x}^{2}}{k+1}$+$\frac{{y}^{2}}{1-k}$=1表示椭圆”的必要不充分条件.
故选:B.
点评 本题考查了简易逻辑的应用、不等式解法、椭圆的标准方程,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{O{G}_{1}}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$ | B. | $\overrightarrow{O{G}_{1}}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$ | ||
C. | $\overrightarrow{O{G}_{1}}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{3}{4}$$\overrightarrow{OB}$+$\frac{3}{4}$$\overrightarrow{OC}$ | D. | $\overrightarrow{O{G}_{1}}$=$\frac{1}{9}$$\overrightarrow{OA}$+$\frac{1}{9}$$\overrightarrow{OB}$+$\frac{1}{9}$$\overrightarrow{OC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (3,0) | B. | (3,3) | C. | (4,3) | D. | (6,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{9}{25}$ | B. | $\frac{4}{5}$ | C. | $\frac{9}{16}$ | D. | $\frac{9}{20}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com