精英家教网 > 高中数学 > 题目详情

A={x|-2≤x≤2},B={y|0≤y≤8}.从A到B的对应法则f不是映射的是


  1. A.
    f:x→y=2x2
  2. B.
    f:x→y=2x
  3. C.
    f:x→y=4x
  4. D.
    f:x→y=ln(x+3)+5
C
分析:通过举反例,按照对应法则f,集合A中的元素-2,在后一个集合B中没有元素与之对应,故选项C不是映射,从而选出答案.
解答:C不是映射,按照对应法则f,集合A中的元素-2→-8,在后一个集合B中没有元素与之对应,故不满足映射的定义.
A、B、D是映射,因为按照对应法则f,集合A中的每一个元素,在后一个集合B中都有唯一的一个元素与之对应,
故A、B、D满足映射的定义,
故选C.
点评:本题考查映射的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

21、设U=R,A={x|-2≤x<4},B={x|8-2x≥3x-7},求:
(1)Cu(A∪B);(CuA)∩B;
(2)设D={x|x>m},满足A⊆D,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)设全集U=R,A={x|2(x-1)2<2},B={x|log
1
2
(x2+x+1)>-log2(x2+2)
},则图中阴影部分表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案