【题目】已知函数.
(Ⅰ)若,令函数,求函数在上的极大值、极小值;
(Ⅱ)若函数在上恒为单调递增函数,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运
会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
支持 | 不支持 | 合计 | |
年龄不大于50岁 | 80 | ||
年龄大于50岁 | 10 | ||
合计 | 70 | 100 |
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的导函数的图象如图所示,给出下列判断:
①函数在区间内单调递增;②函数在区间内单调递减;③函数在区间内单调递增;④当时,函数有极小值;⑤当时,函数有极大值.则上述判断中正确的是( )
A. ①② B. ③
C. ②③ D. ③④⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设首项为1的正项数列{an}的前n项和为Sn,且Sn+1-3Sn=1.
(1) 求证:数列{an}为等比数列;
(2) 数列{an}是否存在一项ak,使得ak恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三条直线l1:2x-y+a =" 0" (a>0),直线l2:-4x+2y+1 = 0和直线l3:x+y-1= 0,且l1与l2的距离是.
(1)求a的值;
(2)能否找到一点P,使得P点同时满足下列三个条 件:
①P是第一象限的点;
②P 点到l1的距离是P点到l2的距离的;
③P点到l1的距离与P点到l3的距离之比是∶.若能,求P点坐标;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,根据下列条件解三角形,其中有两个解的是( )
A. b="10," A=450, C=600 B. a=6, c=5, B=600
C. a=7, b=5, A=600 D. a=14, b="16," A=450
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【湖南省2017届高三长郡中学、衡阳八中等十三校重点中学第一次联考数学(理)】
已知函数.
(1)当时,试求函数图像过点的切线方程;
(2)当时,若关于的方程有唯一实数解,试求实数的取值范围;
(3)若函数有两个极值点,且不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆: 的离心率为,以椭圆的左顶点为圆心作圆: ,设圆与椭圆交于点与点.
(1)求椭圆的方程;
(2)求的最小值,并求此时圆的方程;
(3)设点是椭圆上异于, 的任意一点,且直线分别与轴交于点, 为坐标原点,求证: 为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com