分析 分别求出关于p,q成立的a的范围,从而求出P∨Q是真命题时的a的范围即可.
解答 解:(Ⅰ)∵命题P:关于x的方程x2-(a+3)x+a+3=0有两个不等正实根,
∴$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}=a+3>0}\\{{x}_{1}{•x}_{2}=a+3>0}\\{△{=(a+3)}^{2}-4(a+3)>0}\end{array}\right.$,解得:a>1,
又∵命题Q:不等式ax2-(a+3)x-1<0对任意实数x均成立,
当a=0时:不等式变为:-3x-1≤0,解得:x≥-$\frac{1}{3}$,显然不符合题意,
当a≠0时:$\left\{\begin{array}{l}{a<0}\\{△{=(a+3)}^{2}+4a<0}\end{array}\right.$,解得:-9<a<-1,
若P∨Q是真命题,则实数a的范围是:-9<a<-1或a>1.
点评 本题考查了复合命题的判断,考查二次函数的性质,是一道中档题.
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | (1,$\sqrt{2}$) | C. | (0,1) | D. | (0,$\frac{\sqrt{2}}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若α≠$\frac{π}{6}$,则tanα≠$\frac{\sqrt{3}}{3}$ | B. | 若α=$\frac{π}{6}$,则tanα≠$\frac{\sqrt{3}}{3}$ | ||
C. | 若tanα≠$\frac{\sqrt{3}}{3}$,则α≠$\frac{π}{6}$ | D. | 若tanα≠$\frac{\sqrt{3}}{3}$,则α=$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | $±\sqrt{2}$ | D. | 0或$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com