【题目】已知函数,,若函数有6个零点(互不相同),则实数a的取值范围为________.
【答案】
【解析】
令,则,作出,的图象,通过对a分类讨论并结合函数的图象即可得到答案.
由已知,,易知在上单调递减,在,上单调递增,令,则,作出,的图象如图所示
当时,与只有1个交点,此时与只有1个交点,不满足题意;
当时,与有2个交点,此时与有3个交点,
与有1个交点,故一共有4个交点,不满足题意;
当时,与有2个交点,要使原函数有6个零点,
只需,所以;
当时,与只有2个交点,此时与有3个交点,
与有3个交点,故一共有6个交点,满足题意;
当时,与有2个交点,此时与有3个交点,
与有3个交点,故一共有6个交点,满足题意;
当时,与只有1个交点,此时与只有1个交点,不满足题意;
综上,a的取值范围是.
故答案为:
科目:高中数学 来源: 题型:
【题目】某印刷厂为了研究单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册) | |||||
单册成本(元) |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到);
印刷册数(千册) | ||||||
单册成本(元) | ||||||
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | |||||
残差 |
②分别计算模型甲与模型乙的残差平方和,并通过比较,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为千册,若印刷厂以每册元的价格将书籍出售给订货商,求印刷厂二次印刷千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.向这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是( )
A.甲48枚,乙48枚B.甲64枚,乙32枚
C.甲72枚,乙24枚D.甲80枚,乙16枚
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆经过点,且点与椭圆的左、右顶点连线的斜率之积为.
(1)求椭圆的方程;
(2)若椭圆上存在两点,使得的垂心(三角形三条高的交点)恰为坐标原点,试求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )
①公共图书馆业机构数与年份的正相关性较强
②公共图书馆业机构数平均每年增加13.743个
③可预测 2019 年公共图书馆业机构数约为3192个
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面的茎叶图记录了甲、乙两代表队各10名同学在一次英语听力比赛中的成绩(单位:分).已知甲代表队数据的中位数为76,乙代表队数据的平均数是75.
(1)求,的值;
(2)若分别从甲、乙两队随机各抽取1名成绩不低于80分的学生,求抽到的学生中,甲队学生成绩不低于乙队学生成绩的概率;
(3)判断甲、乙两队谁的成绩更稳定,并说明理由(方差较小者稳定).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com