精英家教网 > 高中数学 > 题目详情

【题目】关于函数,下列说法正确的是( )

1的极小值点;

2)函数有且只有1个零点;

3恒成立;

4)设函数,若存在区间,使上的值域是,则.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

【答案】C

【解析】

对于(1),对函数求导,得出函数的单调性,可判断;

对于(2)令,对其求导,得出其单调性,且可得出当,可判断;

对于(3),令,对其求导,得出其单调性,取特殊函数值,可判断;

对于(4),对函数求导可得,分析判断出上单调递增,也即是,单调递增,将已知条件转化为 上至少有两个不同的正根,可得,令 求导,分析的单调性,可得出的范围,可判断命题.

对于(1),由题意知,,令,所以函数在区间上单调递减,在区间上单调递增,

所以的极小值点,故(1)正确;

对于(2)令,则.函数上单调递减, 又当,

所以函数有且只有1个零点,故(2)正确;

对于(3),令,则

所以函数单调递减,且,所以函数不是恒成立的,

所以不是恒成立的,故(3)不正确;

对于(4),因为,所以

,则,所以当时,

所以上单调递增,且,所以当时,

所以上单调递增,也即是,单调递增,

又因为上的值域是,所以 ,

上至少有两个不同的正根,

求导得

,则,所以 上单调递增,且

所以当时, ,当时,

所以是单调递减,上单调递增,所以,而

所以,故(4)正确;

所以正确的命题有:(1)(2)(4),

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是关于的方程的两个不相等的实数根,那么过两点的直线与圆的位置关系是(

A.相离B.相切C.相交D.的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为,点在椭圆上,且.

1)求椭圆的方程;

2)点PQ在椭圆上,O为坐标原点,且直线的斜率之积为,求证:为定值;

3)直线l过点且与椭圆交于AB两点,问在x轴上是否存在定点M,使得为常数?若存在,求出点M坐标以及此常数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,有下述命题:①若是奇函数,则的图象关于点对称;②函数的图象关于直线对称,则为偶函数;③若对,有,则2的一个周期;④函数的图象关于直线对称.其中正确的命题是______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应绿色出行,某市在推出共享单车后,又推出新能源分时租赁汽车.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:根据行驶里程数按1/公里计费;行驶时间不超过分时,按/分计费;超过分时,超出部分按/分计费.已知王先生家离上班地点公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间 ()是一个随机变量.现统计了次路上开车花费时间,在各时间段内的频数分布情况如下表所示:

时间(分)

频数

将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为分.(1)写出王先生一次租车费用(元)与用车时间(分)的函数关系式;(2)若王先生一次开车时间不超过分为路段畅通”,表示3次租用新能源分时租赁汽车中路段畅通的次数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(Ⅰ)写出直线的普通方程和曲线的直角坐标方程;

(Ⅱ)若直线经过曲线的焦点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

(1)若,求数列的通项公式;

(2)若,且数列是公比等于2的等比数列,求的值,使数列也是等比数列;

(3)若,且,数列有最大值与最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产的某批产品的销售量万件(生产量与销售量相等)与促销费用万元满足(其中为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为件.

1)将该产品的利润万元表示为促销费用万元的函数;

2)促销费用投入多少万元时,该公司的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:且对一切,均有

1)求证:数列为等差数列,并求数列的通项公式;

2)求数列的前项和

3)设,记数列的前项和为,求正整数,使得对任意,均有

查看答案和解析>>

同步练习册答案