精英家教网 > 高中数学 > 题目详情

【题目】已知在四面体中,,则四面体外接球的表面积为__________

【答案】

【解析】由题意可采用割补法,考虑到四面体的四个面为全等的三角形,所以可在其每个面补上一个以,为三边的三角形作为底面,分别以x,y,z为侧棱长且两两垂直的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且设球半径为,则有所以球的表面积为

点睛: (1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”.

(2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2016622 日,“国际教育信息化大会在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为9: 11.

1根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年比“青少年”更加关注“国际教育信息化大会

2现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“国际教育信息化大会”的人数为的分布列及数学期望.

:参考公式其中.

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求的单调区间;

(2)若的图象与轴交于两点,起,求的取值范围;

(3)令 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(2x)=x2﹣2ax+3
(1)求函数y=f(x)的解析式
(2)若函数y=f(x)在[ ,8]上的最小值为﹣1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一个动点,∠CPB=α,∠DPA=β. (Ⅰ)当 最小时,求tan∠DPC的值;
(Ⅱ)当∠DPC=β时,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xsinx,x1、x2∈[﹣ ],且f(x1)>f(x2),则下列结论必成立的是(
A.x1>x2
B.x1+x2>0
C.x1<x2
D.x12>x22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于轴对称,当函数在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时, ),且曲线处的切线与直线平行.

(1)求的值及函数的解析式;

(2)若函数在区间上有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)是定义在(0,+∞)上单调函数,且对x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,则方程f(x)﹣f′(x)=e的实数解所在的区间是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

查看答案和解析>>

同步练习册答案