精英家教网 > 高中数学 > 题目详情
17.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$过抛物线y2=8x的焦点,且与双曲线${x^2}-\frac{y^2}{2}=1$有相同的焦点,则该椭圆的方程是(  )
A.$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$B.$\frac{x^2}{4}+{y^2}=1$C.${x^2}+\frac{y^2}{4}=1$D.$\frac{{x}^{2}}{2}$+$\frac{y^2}{4}$=1

分析 确定抛物线y2=8x的焦点坐标,双曲线${x^2}-\frac{y^2}{2}=1$的焦点坐标,可得椭圆中相应的参数,即可求得椭圆的方程.

解答 解:抛物线y2=8x的焦点坐标为(2,0),双曲线${x^2}-\frac{y^2}{2}=1$的焦点坐标为(±$\sqrt{3}$,0),
∵椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$过抛物线y2=8x的焦点,且与双曲线${x^2}-\frac{y^2}{2}=1$有相同的焦点,
∴a=2,c=$\sqrt{3}$,
∴b=1,
∴该椭圆的方程是$\frac{x^2}{4}+{y^2}=1$,
故选B.

点评 本题考查圆锥曲线的共同特征,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x-a,g(x)=a|x|,a∈R.
(1)设F(x)=f(x)-g(x).
①若a=$\frac{1}{2}$,求函数y=F(x)的零点;
②若函数y=F(x)存在零点,求a的取值范围.
(2)设h(x)=f(x)+g(x),x∈[-2,2],若对任意x1,x2∈[-2,2],|h(x1)-h(x2)|≤6恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设曲线x=$\sqrt{2y-{y}^{2}}$上的点到直线x-y-2=0的距离的最大值为a,最小值为b,则a-b的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$+1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2}$.
(1)求函数f(x)的最小正周期和对称轴;
(2)将函数f(x)的图象各点纵坐标不变,横坐标伸长为原来的2倍,然后向左平移$\frac{π}{3}$个单位,得函数g(x)的图象.若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=6,且g(B)=0,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某教育机构随机某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成时,所作的频率分布直方图如图所示,则原始茎叶图可能是(  ) 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.在频率分布直方图中,众数左边和右边的直方图的面积相等
B.为调查高三年级的240名学生完成作业所需的时间,由教务处对高三年级的学生进行编号,从001到240抽取学号最后一位为3的学生进行调查,则这种抽样方法为分层抽样
C.“x≠1”是“x2-3x+2≠0”的充分不必要条件
D.命题p:“?x0∈R,${x_0}^2-3{x_0}+2<0$”的否定为:“?x∈R,x2-3x+2≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足不等式组$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{y≥0}\end{array}\right.$,则$\frac{y+1}{x+1}$的最大值为(  )
A.3B.5C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知F1,F2 分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1,(a>1)的左、右焦点,P在椭圆上且到两个焦点F1,F2 的距离之和为2$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,作F1M⊥l,F2N⊥l,分别交直线l于M、N两点,求四边形F1MNF2的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设$\overrightarrow a=(2,-1),向量\overrightarrow b满足2\overrightarrow a-\overrightarrow b$=(-1,3),则$\overrightarrow b$等于(  )
A.(-5,5)B.(5,-5)C.(-3,3)D.(3,-3)

查看答案和解析>>

同步练习册答案