精英家教网 > 高中数学 > 题目详情
14.某市大型国有企业按照中央“调结构、保增长、促发展”的指示精神,计划投资甲乙两个项目,前期调研获悉,甲项目每投资百万元需要配套电能2万千瓦,增加产值200万元;乙项目每投资百万元需要配套电能4万千瓦,增加产值300万元,根据该企业目前资金储备状况仅能最多投资3000万元,配套电能100万千瓦.
(Ⅰ)假设企业在甲、乙两个项目投资额分别为x,y(单位:百万元),请写出x,y所满足的约束条件,并在所给出的坐标系画出可行域;
(Ⅱ)计算如何安排对甲、乙两个项目投资额,才能使产值有最大的增加值.

分析 (I)由题意知投资额x,y所满足的约束条件$\left\{\begin{array}{l}x+y≤30\\ 2x+4y≤100\\ x≥0,y≥0\end{array}\right.$,分别求出O,A,B,C四点的坐标,画出不等式组表示的可行域;
(II)目标函数为z=200x+300y,可通过z=0的直线平移可得经过A点时取得最大值.

解答 解:(I)由题意知投资额x,y所满足的约束条件为
$\left\{\begin{array}{l}x+y≤30\\ 2x+4y≤100\\ x≥0,y≥0\end{array}\right.$,
对应的边界点分别为O(0,0),A(10,20),
B(0,25),C(30,0),
如图,可行域为四边形OCAB及其内部区域(含边界).
(II)目标函数为z=200x+300y,其斜率为$k=-\frac{2}{3}$,
而可行域的边界对应的斜率分别为$-1,-\frac{1}{2}$,
所以当目标函数对应的动直线z=200x+300y经过点A(10,20)时,
即甲、乙两个项目投资额分别安排1000万元、2000万元,才能使产值有最大的增加值.

点评 本题考查简单线性规划的运用,考查数形结合的思想方法,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知双曲线的中心是原点,焦点到渐近线的距离为2,一条准线方程为y=-3,则其渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO,PF2分别交双曲线C左,右支于另一点,M,N.若|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{-|x^3-2x^2+x|,x<1}\\{lnx,x≥1}\end{array}\right.$,若对于?t∈R,f(t)≤kt恒成立,则实数k的取值范围是[$\frac{1}{e}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若z(1+i)=(1-i)2(i为虚数单位),则z=-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线的焦点在y轴上,且焦距为2$\sqrt{3}$,焦点到一条渐近线的距离为$\sqrt{2}$,则双曲线的标准方程为(  )
A.x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$-y2=1C.y2-$\frac{{x}^{2}}{2}$=1D.$\frac{{y}^{2}}{2}$-x2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.己知向量$\overrightarrow{a}$=(l,2),$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$丄($\overrightarrow{a}$-$\overrightarrow{b}$),则实数x=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=sin($\frac{1}{2}$x+θ)是偶函数,则θ的一个值是(  )
A.B.-$\frac{π}{2}$C.-$\frac{π}{4}$D.-$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x),g(x)都是定义在R上的函数,并满足:f(x)=ax•g(x)(a>0,且a≠1)和f′(x)•g(x)>f(x)•g′(x)(g(x)≠0),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,当数列{$\frac{f(n)}{g(n)}$}的前n项和大于62时,n的最小值是(  )
A.9B.8C.7D.6

查看答案和解析>>

同步练习册答案