精英家教网 > 高中数学 > 题目详情
9.已知圆C1:x2+y2-4x-4y-1=0,圆C2:x2+y2+2x+8y-8=0,圆C1与圆C2的位置关系为(  )
A.外切B.相离C.相交D.内切

分析 把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距,大于半径之差,而小于半径之和,可得两个圆关系.

解答 解:圆C1:x2+y2-4x-4y-1=0,即 (x-2)2+(y-2)2=9,表示以C1(2,2)为圆心,半径等于3的圆.
圆C2:x2+y2+2x+8y-8=0,即 (x+1)2+(y+4)2=25,表示以C2(-1,-4)为圆心,半径等于5的圆.
∴两圆的圆心距d=$\sqrt{(2+1)^{2}+(2+4)^{2}}$=$3\sqrt{5}$,
∵5-3<$3\sqrt{5}$<5+3,故两个圆相交.
故选:C.

点评 本题主要考查圆的标准方程,圆和圆的位置关系,圆的标准方程的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.点S在平面ABC外,SB⊥AC,SB=AC=4,E、F分别是SC和AB的中点,则EF的长是(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,$\overrightarrow a$=(2,0),|$\overrightarrow b$|=1,则|$\overrightarrow a$+2$\overrightarrow b$|=(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.12D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=x2-x+1,命题p:?x∈R,f(x)>0,则(  )
A.p是真命题,¬p:?x0∈R,f(x0)<0B.p是真命题,¬p:?x0∈R,f(x0)≤0
C.p是假命题,¬p:?x0∈R,f(x0)<0D.p是假命题,¬p:?x0∈R,f(x0)≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等差数列{an}中,a3+a4+a5=21,a9=17.
(1)求数列{an}的通项公式;
(2)令bn=2an-an(n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆方程为$\frac{x^2}{25}+\frac{y^2}{9}$=1,a1,a2,…,a9是该椭圆的过焦点的其中9条弦的长度,若数列a1,a2,…,a9是等差数列,则数列a1,a2,…,a9的公差的最大值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在实数集R上的函数y=f(x)满足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0(x1≠x2),若f(5)=-1,f(7)=0,那么f(-3)的值可以为(  )
A.5B.-5C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.执行程序框图,输出的T=18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x+1)的定义域是[-2,2],则函数f(2x-1)+f(2x+1)的定义域是[0,1].

查看答案和解析>>

同步练习册答案