已知椭圆:的左焦点为,且过点.
(1)求椭圆的方程;
(2)设过点P(-2,0)的直线与椭圆E交于A、B两点,且满足.
①若,求的值;
②若M、N分别为椭圆E的左、右顶点,证明:
(1) ;(2)参考解析
【解析】
试题分析:(1)因为由椭圆:的左焦点为,即.由点到两焦点的距离和可求出椭圆的长轴.从而可以求出椭圆的方程.
(2)(1)通过假设直线的方程联立椭圆方程消去y可得一个一元二次方程,由韦达定理即可求出直线的斜率k的值,从而解出A,B两点的坐标,即可得结论.(2)分别求两直线的斜率和,利用韦达定理得到的关系式即可证明斜率和为零.即可得到结论.
试题解析:(1)因为焦点为, C=1,又椭圆过,
取椭圆的右焦点,,由得,
所以椭圆E的方程为
(2)①设,,
显然直线斜率存在,设直线方程为
由得:
得,,
,,
,符合,由对称性不妨设,
解得,
②若,则直线的方程为,
将代入得, 不满足题意,同理
,,
考点:1.椭圆的性质.2.直线与椭圆的位置关系.3.韦达定理.4.几何问题构建代数方法解决.
科目:高中数学 来源: 题型:
如图,已知椭圆+=1的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.
(1)若点G的横坐标为-,求直线AB的斜率.
(2)记△GFD的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,已知椭圆+=1的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.
(1)若点G的横坐标为-,求直线AB的斜率.
(2)记△GFD的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届江西师大附中高三年级10月月考理科数学试卷(解析版) 题型:解答题
已知椭圆:的左焦点为,右焦点为.
(Ⅰ)设直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求点M的轨迹的方程;
(Ⅱ)设为坐标原点,取曲线上不同于的点,以为直径作圆与相交另外一点,求该圆的面积最小时点的坐标.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年北京市昌平区高三考模拟考试数学试卷(文科) 题型:解答题
已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com