精英家教网 > 高中数学 > 题目详情
(本小题满分12分)设直线与直线交于点.
(1)当直线点,且与直线垂直时,求直线的方程;
(2)当直线点,且坐标原点到直线的距离为时,求直线的方程.
(1) . (2).

试题分析:由,解得点.                      ………………………2分
(1)因为,所以直线的斜率,   ………………………4分
又直线过点,故直线的方程为:,即.                                      …………………………6分
(2)因为直线过点,当直线的斜率存在时,可设直线的方程为.                            …………………7分
所以坐标原点到直线的距离,解得,  …………9分
因此直线的方程为:,即.  …………10分
当直线的斜率不存在时,直线的方程为,验证可知符合题意.
综上所述,所求直线的方程为.  ………………12分
点评:典型题,在直线与直线的位置关系问题中,平行、垂直是两类常见题型,如果利用斜率关系加以研究,必须考虑直线斜率不存在的可能情况。(2)是易错题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点分别为,离心率
(1)求椭圆方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为–,求直线l倾斜角的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(文)已知椭圆的一个焦点为,点在椭圆上,点满足(其中为坐标原点), 过点作一斜率为的直线交椭圆于两点(其中点在轴上方,点在轴下方) .

(1)求椭圆的方程;
(2)若,求的面积;
(3)设点为点关于轴的对称点,判断的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,椭圆的中心在坐标原点,为左焦点,当时,其离心率为,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,可推出“黄金双曲线”的离心率为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为.
(1)求椭圆的方程。
(2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的短轴为,一个焦点为,且为等边三角形的椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列方程的曲线关于y轴对称的是(  )
A.x2-x+y2=1B.x2y+xy2=1
C.x2-y2=1 D.x-y="1"

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
求焦点为(-5,0)和(5,0),且一条渐近线为的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知双曲线以长方形ABCD的顶点A、B为左、右焦点,且双曲线过C、D两顶点.若AB=4,BC=3,则此双曲线的标准方程为_____________________.

查看答案和解析>>

同步练习册答案