精英家教网 > 高中数学 > 题目详情
20、如图:EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是多少?
分析:根据切线长定理得EC=EB,则∠ECB=∠EBC=67°,再根结合内接四边形的对角互补得∠A=∠ECB+∠DCF=67°+32°=99°.
解答:解:∵EB、EC是⊙O的切线,
∴EB=EC,
又∵∠E=46°,
∴∠ECB=∠EBC=67°,
∴∠BCD=180°-(∠BCE+∠DCF)=180°-99°;
∵四边形ADCB内接于⊙O,
∴∠A+∠BCD=180°,
∴∠A=99°.
点评:此题综合考查了切线长定理、圆内接四边形的性质和等腰三角形的性质以及三角形的内角和定理等知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图:EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=50°,∠DCF=40°,则∠A的度数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的大小为
99°
99°

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-5 不等式选讲)
若任意实数x使m≥|x+2|-|5-x|恒成立,则实数m的取值范围是
[7,+∞)
[7,+∞)

B.(选修4-1 几何证明选讲)
如图:EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是
99°
99°

C.(选修4-4坐标系与参数方程)
极坐标系下,直线ρcos(θ-
π
4
)=
2
与圆ρ=
2
的公共点个数是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的大小为(  )
A、70°B、80°C、90°D、99°

查看答案和解析>>

同步练习册答案