精英家教网 > 高中数学 > 题目详情
三次 函数f(x)=mx3-x在(-∞,+∞)上是减函数,则m的取值范围是(  )
分析:先求函数f(x)的导数,因为当函数为减函数时,导数小于0,所以若f(x)在(-∞,+∞)上是减函数,则f′(x)≤0在R上恒成立,再利用一元二次不等式的解的情况判断,来求m的范围.
解答:解:对函数f(x)=mx3-x求导,得f′(x)=3mx2-1
∵函数f(x)在(-∞,+∞)上是减函数,
∴f′(x)≤0在R上恒成立
即3mx2-1≤0恒成立,
3m<0
△=12m≥0
,解得m≤0,
又∵当m=0时,f(x)=-x不是三次函数,不满足题意,
∴m<0
故选A
点评:本题主要考查函数的单调性与其导函数的正负之间的关系.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(I)求函数y=f(x)的表达式;
(II)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数g(x)=f(x-m)+4m(m>0)在区间[m-3,n]上的值域为[-4,16],试求m、n应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d,定义y=f″(x)是函数y=f′(x)的导函数.若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心.根据这一发现,对于函数g(x)=2x3-6x2+3x+2+2013sin(x-1),则g(-2011)+g(-2010)+…+g(2012)+g(2013)的值为
4025
4025

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=4x3+ax2+bx+c(a,b,c∈R)
(1)如果f(x)是奇函数,过点(2,10)作y=f(x)图象的切线l,若这样的切线有三条,求实数b的取值范围;
(2)当-1≤x≤1时有-1≤f(x)≤1,求a,b,c的所有可能的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三次函数f(x)=x3+ax2+bx+c的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.
(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求
f(x)+8xx2
的最大值;
(2)若函数在x=1处取得极值-2,试用c表示a和b,并求f(x)的单调递减区间;
(3)设点A、B、C、D的横坐标分别为xA,xB,xC,xD求证    (xA-xB):(xB-xC):(xC-xD)=1:2:1.

查看答案和解析>>

同步练习册答案