精英家教网 > 高中数学 > 题目详情

【题目】中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,作为国家战略性空间基础设施,我国北斗卫星导航系统不仅对国防安全意义重大,而且在民用领域的精准化应用也越来越广泛.据统计,2016年卫星导航与位置服务产业总产值达到2118亿元,较2015年约增长.下面是40个城市北斗卫星导航系统与位置服务产业的产值(单位:万元)的频率分布直方图:

(1)根据频率分布直方图,求产值小于500万元的城市个数;

(2)在上述抽取的40个城市中任取2个,设为产值不超过500万元的城市个数,求的分布列及期望和方差.

【答案】(1)14;(2)答案见解析.

【解析】分析:(1)根据频率分布直方图,能求出产值小于500万元的城市个数;

(2)由Y的所有可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列及期望和方差.

详解:(1)根据频率分布直方图可知,产值小于500万元的城市个数为:[(0.03+0.04)×5]×40=14.

(2)Y的所有可能取值为0,1,2.

∴Y的分布列为:

Y

0

1

2

P

期望为:

方差为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

298.8

1.6

1469

108.8

表中

(1)根据散点图判断,哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)以知这种产品的年利率的关系为.根据(2)的结果求年宣传费时,年销售量及年利润的预报值是多少?

附:对于一组数据……,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中点.
(Ⅰ)求证:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级开设五门选修课,每位同学须彼此独立地从中选择两门课程,已知甲同学必选课程,乙同学不选课程,丙同学从五门课程中随机任选两门.

(1)求甲同学与乙同学恰有一门课程相同的概率;

(2)设为甲、乙、丙三位同学中选课程的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,点的中点.

(1)求证:直线平面

(2)求证:平面平面

(3)求直线与平面的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图象在点处的切线方程为,求的值;

(2)当时,在区间上至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求的单调区间;

(2)若为整数,且当时, 恒成立,其中的导函数,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示.

(1)求函数的解析式;

(2)求图中的值及函数的单调递减区间;

(3)若将的图象向左平移个单位后,得到的图像关于直线对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A、B、C为⊙O上三点,B为 的中点,P为AC延长线上一点,PQ与⊙O相切于点Q,BQ与AC相交于点D.
(Ⅰ)证明:△DPQ为等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.

查看答案和解析>>

同步练习册答案