【题目】己知,分别为椭圆C:的左、右焦点,点在椭圆C上.
(1)求的最小值;
(2)已知直线l:与椭圆C交于两点A、B,过点且平行于直线l的直线交椭圆C于另一点Q,问:四边形PABQ能否成为平行四边形?若能,请求出直线l的方程;若不能,请说明理由.
科目:高中数学 来源: 题型:
【题目】设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=( )1﹣x , 则
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0;
④x=1是函数f(x)的一个对称轴;
⑤当x∈(3,4)时,f(x)=( )x﹣3 .
其中所有正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P ABCD中,E是棱PC上一点,且2,底面ABCD是边长为2的正方形,△PAD为正三角形,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l,且平面PAD⊥平面ABCD.
(1)求证:l∥EF;
(2)求四棱锥P-ABEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为An , 对任意n∈N*满足 ﹣ = ,且a1=1,数列{bn}满足bn+2﹣2bn+1+bn=0(n∈N*),b3=5,其前9项和为63.
(1)求数列{an}和{bn}的通项公式;
(2)令cn= + ,数列{cn}的前n项和为Tn , 若对任意正整数n,都有Tn≥2n+a,求实数a的取值范围;
(3)将数列{an},{bn}的项按照“当n为奇数时,an放在前面;当n为偶数时,bn放在前面”的要求进行“交叉排列”,得到一个新的数列:a1 , b1 , b2 , a2 , a3 , b3 , b4 , a4 , a5 , b5 , b6 , …,求这个新数列的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的四棱锥S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E为线段BS上的一个动点.
(1)证明:DE和SC不可能垂直;
(2)当点E为线段BS的三等分点(靠近B)时,求二面角S﹣CD﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f()=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为( )
A.(0,)
B.(0,)
C.( , )
D.( , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com