精英家教网 > 高中数学 > 题目详情
在△ABC中
a+b
a-b
等于(  )
A、
sin(A+B)
sin(A-B)
B、
tan(A+B)
tan(A-B)
C、
sin
A+B
2
sin
A-B
2
D、
tan
A+B
2
tan
A-B
2
分析:先利用正弦定理把边转换成角的问题,再利用和差化积公式求得结果.
解答:解:根据正弦定理可知
a+b
a-b
=
sinA+sinB
sinA-sinB
=
2sin
A+B
2
cos
A-B
2
2cos
A+B
2
sin
A-B
2
=
tan
A+B
2
tan
A-B
2

故选D
点评:本题主要考查了正弦定理的应用.涉及了三角函数中的和差化积公式和同角三角函数关系.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在△ABC中,|
BA
|=|
BC
|
,延长CB到D,使
AC
AD
,若
AD
AB
AC
,则λ-μ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
3
3
2
]
,则∠B的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
(1)若函数f(x)=lg(x+
x2+a
),为奇函数,则a=1;
(2)函数f(x)=|sinx|的周期T=π;
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
),则
a
b

(4)在△ABC中,
BA
=a,
AC
=b,若a•b<0,则△ABC是钝角三角形
( 5)O是△ABC所在平面上一定点,动点P满足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),则直线AP一定通过△ABC的内心.
以上命题为真命题的是
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,
BA
BC
=3,S△ABC∈[
3
2
3
3
2
]
,则∠B的取值范围是(  )
A.[
π
4
π
3
]
B.[
π
6
π
4
]
C.[
π
6
π
3
]
D.[
π
3
π
2
]

查看答案和解析>>

同步练习册答案