【题目】已知函数()在上的最小值为,当把的图象上所有的点向右平移个单位后,得到函数的图象.
(1)求函数的解析式;
(2)在△中,角,,对应的边分别是,,,若函数在轴右侧的第一个零点恰为,,求△的面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知函数(, )为奇函数,且相邻两对称轴间的距离为.
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
问题解决
如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C、D重合),压平后得到折痕MN.当时,求的值.
类比归纳
在图(1)中,若则的值等于 ;若则的值等于 ;若(n为整数),则的值等于 .(用含的式子表示)
联系拓广
如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C、D重合),压平后得到折痕MN设,则的值等
于 ▲ .(用含的式子表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆()的离心率是,过点(,)的动直线与椭圆相交于,两点,当直线平行于轴时,直线被椭圆截得的线段长为.
⑴求椭圆的方程:
⑵已知为椭圆的左端点,问: 是否存在直线使得的面积为?若不存在,说明理由,若存在,求出直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法种数:
(1)选其中5人排成一排
(2)全体排成一排,甲不站在排头也不站在排尾
(3)全体排成一排,男生互不相邻
(4)全体排成一排,甲、乙两人中间恰好有3人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程与直线的直角坐标方程;
(2)设为曲线上的动点,求点的直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论.现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如下表:
编号 成绩 | 1 | 2 | 3 | 4 | 5 |
物理() | 90 | 85 | 74 | 68 | 63 |
数学() | 130 | 125 | 110 | 95 | 90 |
求数学成绩关于物理成绩的线性回归方程(精确到
若某位学生的物理成绩为80分,预测他的数学成绩;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:
(1)根据已有数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?
(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.
附: , .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com