精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系中,已知点M(1,0),P(x,y)为平面上一动点,P到直线x=2的距离为d,$\frac{|PM|}{d}$=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)不过原点O的直线l与C相交于A,B两点,线段AB的中点为D,直线OD与直线x=2交点的纵坐标为1,求△OAB面积的最大值及此时直线l的方程.

分析 (Ⅰ)利用两点间距离公式、点到直线的距离公式,根据$\frac{|PM|}{d}$=$\frac{\sqrt{2}}{2}$,列出方程,由此能求出点P的轨迹C的方程.
(Ⅱ)直线OD的方程为y=$\frac{1}{2}x$,由点差数求出直线l的斜率,进而其方程设为y=-x+m,m≠0,联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=-x+m}\end{array}\right.$,得:3x2-4mx+2m2-2=0,由此利用根的判别式、韦达定理、弦长公式、点到直线距离公式,结合已知条件,能求出△OAB面积的最大值及此时直线l的方程.

解答 解:(Ⅰ)∵在平面直角坐标系中,已知点M(1,0),P(x,y)为平面上一动点,
∴|PM|=$\sqrt{(x-1)^{2}+{y}^{2}}$,
∵P到直线x=2的距离为d,∴d=|x-2|,
∵$\frac{|PM|}{d}$=$\frac{\sqrt{2}}{2}$,∴$\frac{|PM|}{d}$=$\frac{\sqrt{(x-1)^{2}+{y}^{2}}}{|x-2|}$=$\frac{\sqrt{2}}{2}$.
整理,得:$\frac{{x}^{2}}{2}+{y}^{2}$=1.
∴点P的轨迹C的方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1.
(Ⅱ)∵不过原点O的直线l与C相交于A,B两点,
线段AB的中点为D,直线OD与直线x=2交点的纵坐标为1,
∴直线OD的方程为y=$\frac{1}{2}x$,
设A(x1,y1),B(x2,y2),D(x0,y0),其中${y}_{0}=\frac{1}{2}{x}_{0}$,
∵A(x1,y1),B(x2,y2)在椭圆$\frac{{x}^{2}}{2}+{y}^{2}$=1上,
∴$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1}\\{\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}=1}\end{array}\right.$,∴${k}_{AB}=\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{{x}_{1}+{x}_{2}}{2({y}_{1}+{y}_{2})}$=-$\frac{2{x}_{0}}{2•2{y}_{0}}$=-1,
∴直线l的方程为y=-x+m,m≠0,
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=-x+m}\end{array}\right.$,整理,得:3x2-4mx+2m2-2=0,
∵直线l与椭圆有两个不同的交点且不过原点,
∴△=16m2-12(2m2-2)>0,
解得-$\sqrt{3}<m<\sqrt{3}$,且m≠0(*)
由韦达定理,得${x}_{1}+{x}_{2}=\frac{4m}{3}$,${x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{3}$,
∴|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|
=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$
=$\sqrt{2[(\frac{4}{3}m)^{2}-4•\frac{2{m}^{2}-2}{3}}$
=$\frac{4\sqrt{3-{m}^{2}}}{3}$.
∵点O(0,0)到直线l的距离为:h=$\frac{\sqrt{2}|m|}{2}$,
∴S△OAB=$\frac{1}{2}h|AB|$=$\frac{1}{2}•\frac{\sqrt{2}}{2}|m|•\frac{4\sqrt{3-{m}^{2}}}{3}$=$\frac{\sqrt{2}}{3}$$\sqrt{{m}^{2}(3-{m}^{2})}$$≤\frac{6}{6\sqrt{2}}=\frac{\sqrt{2}}{2}$,
当且仅当m2=$\frac{3}{2}$,即m=$±\frac{\sqrt{6}}{2}$时,等号成立,满足(*)式,
∴△OAB面积的最大值为$\frac{\sqrt{2}}{2}$,此时直线l的方程为y=-x$±\frac{\sqrt{6}}{2}$.

点评 本题考查点的轨迹方程的求法,考查三角形面积的最大值及对应的直线方程的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、弦长公式、点到直线距离公式、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为A,P($\frac{4\sqrt{2}}{3}$,$\frac{b}{3}$)是椭圆C上的一点,以AP为直径的圆经过椭圆C的右焦点F2
(1)求椭圆C的方程;
(2)设F1为椭圆C的左焦点,过右焦点F2的直线l与椭圆C交于不同两点M、N,记△F1MN的内切圆的面积为S,求当S取最大值时直线l的方程,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图所示的程序框图中,输出的S的值为$\frac{11}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC的三边长a,b,c成递减的等差数列,若$B=\frac{π}{4}$,则cosA-cosC=(  )
A.$-\sqrt{2}$B.$\sqrt{2}$C.$-\root{4}{2}$D.$\root{4}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.i为虚数单位,复数$\frac{2i}{1-i}$在复平面内对应的点到原点的距离为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知以A(-1,2)点为圆心的圆与直线${l_1}:\frac{1}{2}x+y+\frac{7}{2}=0$相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.
(1)求圆A的方程;
(2)当$|{MN}|=2\sqrt{19}$时,求直线l的方程;
(3)求证:$\overrightarrow{BP}•\overrightarrow{BQ}=-5$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的通项公式为an=$\frac{1}{n(n+2)}$,前n项和为Sn,若实数λ满足(-1)nλ<3+(-1)n+1Sn对任意正整数n恒成立,则实数λ的取值范围是(  )
A.$-\frac{10}{3}$<λ≤$\frac{9}{4}$B.$-\frac{10}{3}$<λ<$\frac{9}{4}$C.$-\frac{9}{4}$<λ≤$\frac{10}{3}$D.$-\frac{9}{4}$<λ<$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=sin(2x+\frac{π}{3})+\sqrt{3}-2\sqrt{3}{cos^2}$x.
(1)求f(x)的最小正周期及其图象的对称中心;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=lg($\frac{2}{1-x}$+a)是奇函数,则a的值为(  )
A.0B.1C.-1D.不存在

查看答案和解析>>

同步练习册答案