精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|2x-1|+|x-2a|.

(1)a=1时,求f(x)≤3的解集;

(2)x[1,2]时,f(x)≤3恒成立,求实数a的取值范围.

【答案】(1);(2).

【解析】

(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集;(2)根据x[1,2]|2x-1|=2x-1,再去绝对值分离变量,最后根据函数最值得实数a的取值范围.

(1)a=1时,由f(x)≤3,可得|2x-1|+|x-2|≤3,

∴①或②或③

解①得0≤x,解②得x<2,解③得x=2.

综上可得,0≤x≤2,即不等式的解集为[0,2].

(2)∵当x∈[1,2]时,f(x)≤3恒成立,

即|x-2a|≤3-|2x-1|=4-2x

故2x-4≤2ax≤4-2x

即3x-4≤2a≤4-x.

再根据3x-4在x∈[1,2]上的最大值为6-4=2,4-x的最小值为4-2=2,

∴2a=2,∴a=1,

a的取值范围为{1}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若存在距离为的两条直线,使得对任意都有恒成立,则称函数有一个宽度为的通道.给出下列函数:

; ②; ③; ④

其中在区间上有一个通道宽度为的函数是__________(写出所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(I)讨论的单调性;

II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解七班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱打篮球

不喜爱打篮球

男生

5

女生

10

合计

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

1)请将上面的列联表补充完整(不用写计算过程)

2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;

3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为,求的分布列与期望.

下面的临界值表供参考:

0.15

0.10

0.05[

0.025

0.01

0.005

0.001

2.072

2.70

3.841

5.024

6.635

7.879

10.82

(参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计,某市骑行过共享单车的人数约占全市的80%,为确定单车的投放数量以及对同年龄的车型配比,需要对该市市民每月骑行单车的次数进行统计,如表所示是对该市随机抽取100位市民的调查结果,每月骑行次数不超过20次称“不经常骑行”,超过20次称“经常骑行”.

经常骑行

不经常骑行

合计

年龄不低于40岁

15

25

40

年龄低于40岁

35

25

60

合计

50

50

100

(1)是否有95%的把握认为骑行单车次数与年龄有关?

(2)以样本的频率为概率

①现从该市市民中随机抽取1人,求该人为“经常骑行”的概率

②已知该市人口约为600万,忽略把经常骑行人数的骑行次数,统计得经常骑行人群每人每月骑行次数的平均值为45次(每月按30天计算),若每辆单车每天被骑行(15次左右,可达到既缓解交通压力又减少了胡乱放置的目的,则该市配置单车的数量应为多少?

附参考公式及数据

0.10

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形中,分别是上的点,的中点,现沿着翻折,使平面平面.

1的中点,求证:平面.

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个平面垂直,下列命题中错误的是(    )

A.两个平面内分别垂直于交线的两条直线相互垂直

B.一个平面内的任一条直线必垂直于另一个平面.

C.一个平面内存在直线垂直于另一个平面

D.一个平面内的任意一条直线都垂直于另一个平面内的无数条直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,且短轴长是长轴长的一半.

(1)求椭圆的方程;

(2)经过点作直线,交椭圆于两点.如果恰好是线段的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)如下图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,EF分别是BCCC1的中点.

(1)证明:平面AEF⊥平面B1BCC1

(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.

查看答案和解析>>

同步练习册答案