精英家教网 > 高中数学 > 题目详情

【题目】化为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

女性用户:

分值区间

频数

20

40

80

50

10

分值区间

频数

45

75

90

60

30

男性用户:

(1)如果评分不低于70分,就表示该用户对手机认可,否则就表示不认可,完成下列列联表并回答是否有的把握认为性别对手机的认可有关:

女性用户

男性用户

合计

认可手机

不认可手机

合计

附:

0.05

0.01

3.841

6635

(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和数学期望.

【答案】(1)列联表

女性用户

男性用户

合计

认可手机

140

180

320

不认可手机

60

120

180

合计

200

300

500

的把握认为性别和对手机的认可有关.

(2)概率分布列为

其期望为 .

【解析】

试题分析:(1)从频数分布表算出女性用户中认可手机人数与不认可手机人数,填入表格,同理算出男性用户中认可手机人数与不认可手机人数,填入表格可得列联表,由公式计算出的值与临界值中数据比较即可;(2)由分层抽样的原则算出从男性用户中抽取20名用户,评分不低于80分的人数,及评分小于90分的人数,评分不小于90分的人数,由古典概型公式分别计算 时的概率可列出概率分布列与期望.

试题解析: 1由频数分布表可得列联表如下图

女性用户

男性用户

合计

认可手机

140

180

320

不认可手机

60

120

180

合计

200

300

500

所以有的把握认为性别和对手机的认可有关.

2)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,记为评分不小于90分的人数为2,记为6人中任取人, 评分小于90分的人数 ,其中 ,所以3名用户中评分小于90分的人数的概率分布列为

其期望为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆 ()的离心率是,过点(,)的动直线与椭圆相交于,两点,当直线平行于轴时,直线被椭圆截得的线段长为

求椭圆的方程:

已知为椭圆的左端点,: 是否存在直线使得的面积为?若不存在,说明理由,若存在,求出直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数满足下列条件:

恒成立;恒成立.

(1)求的值; (2)求的解析式;

(3)求最大的实数,使得存在实数,当时, 恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知椭圆中心在坐标原点,长轴在上,分别在其左、右焦点,椭圆上任意一点,且最大值为1,最小

(1)求椭圆方程;

(2)设椭圆右顶点,直线与椭圆交于两点的任意一条直线,若证明直线定点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为/单位时间),每单位时间的用氧量为升),在水底作业10个单位时间,每单位时间用氧量为升),返回水面的平均速度为/单位时间),每单位时间用氧量为升),记该潜水员在此次考察活动中的总用氧量为升).

(1函数关系式;

(2求当下潜速度什么时,总用氧量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的最小正周期;

(2)若函数对任意,有,求函数在[﹣]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)若求曲线处的切线方程

(2)若无零点求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数 的极值;

(2)若内为单调增函数,求实数的取值范围;

(3)对于,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等式:sin25°+cos235°+sin 5°cos 35°=

sin215°+cos245°+sin 15°cos 45°=,sin230°+cos260°+sin 30°·cos 60°=,…,由此归纳出对任意角度θ都成立的一个等式,并予以证明.

查看答案和解析>>

同步练习册答案