【题目】已知抛物线C:y2=2px(p>0)与圆无公共点,过抛物线C上一点M作圆D的两条切线,切点分别为E,F,当点M在抛物线C上运动时,直线EF都不通过的点构成一个区域,求这个区域的面积的取值范围.
【答案】(0,π)
【解析】
联立圆的方程和抛物线方程,可得的方程,由方程有非负数解,可得,由,既在圆上,又在以为直径的圆上,可得切点弦的方程,考虑关于的方程有解,可得当运动时,直线都不通过的点构成一个区域是圆,由圆的面积公式可得范围.
解:抛物线与圆无公共点,
可得即无非负数解,
即有△,解得或,
可得,设,总在圆外部,即对一切实数都成立,
由,即,即成立,
点,在圆上,也在以,,,为直径的圆上.
即在上,
上面两个圆的方程相减可得:,
即为直线的方程,化为,,
关于的二次方程有实数根,
,
即,
即直线不经过圆的内部的每一个点.
当运动时,直线都不通过的点构成一个区域是圆,
这个区域的面积是,
取值范围是.
科目:高中数学 来源: 题型:
【题目】已知动圆C过定点F(2,0),且与直线x=-2相切,圆心C的轨迹为E,
(1)求圆心C的轨迹E的方程;
(2)若直线l交E与P,Q两点,且线段PQ的中心点坐标(1,1),求|PQ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形的边长为2,,分别为的中点,与交于点,将沿折起到的位置,使平面平面.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判断线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线y2=2px(p>0)的焦点F的直线与抛物线交于A,B两点,且3,抛物线的准线l与x轴交与点C,AA1垂直l于点A1,若四边形AA1CF的面积为,则准线l的方程为( )
A.B.C.x=﹣2D.x=﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线,且与坐标轴形成的三角形面积为.求:
(1)求证:不论为何实数,直线过定点P;
(2)分别求和时,所对应的直线条数;
(3)针对的不同取值,讨论集合直线经过P,且与坐标轴围成的三角形面积为中的元素个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的短轴长为,离心率为。
(1)求椭圆的标准方程;
(2)设椭圆的左,右焦点分别为,左,右顶点分别为,,点,,为椭圆上位于轴上方的两点,且,记直线,的斜率分别为,,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司推出一新款手机,因其功能强大,外观新潮,一上市便受到消费者争相抢购,销量呈上升趋势.散点图是该款手机上市后前6周的销售数据.
(1)根据散点图,用最小二乘法求关于的线性回归方程,并预测该款手机第8周的销量;
(2)为了分析市场趋势,该公司市场部从前6周的销售数据中随机抽取2周的数据,记抽取的销量在18万台以上的周数为,求的分布列和数学期望.参考公式:回归直线方程,其中:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线()与双曲线(,)有相同的焦点,点是两条曲线的一个交点,且轴,则该双曲线经过一、三象限的渐近线的倾斜角所在的区间是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com