精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中直线A1D与平面AB1C1D所成角为(  )
A.30°B.45°C.60°D.90°
∵正方体ABCD-A1B1C1D中
有:A1B⊥AB1,AD⊥A1B⇒A1B⊥平面AB1C1D;
所以:直线A1D与平面AB1C1D所成的角为∠ODA1
∵A1B=BD=A1D
∴∠BDA1=60°;
故∠ODA1=
1
2

∴∠BDA1=30°.
故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

过正方体ABCD-A1B1C1D1的顶点A作直线L,使L与棱AB,AD,AA1所成的角都相等,这样的直线L可以作(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:四面体A-BCD被一平面所截,截面EFHG是一个矩形,
(1)求证:ABFH;
(2)求异面直线AB、CD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在长方体ABCD-A1B1C1D1中,AB=a,AD=b,AC1=c,点M为AB的中点,点N为BC的中点.
(1)求长方体ABCD-A1B1C1D1的体积;
(2)若a=4,b=2,c=
21
,求异面直线A1M与B1N所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正△ABC的顶点A在平面α内,顶点B,C在平面α的同一侧,D为BC的中点,若△ABC在平面α内的射影是以A为直角顶点的三角形,则直线AD与平面α所成角的正弦值的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面αβ,A,C∈α,B,D∈β,AB⊥CD,且AB=2,直线AB与平面α所成的角为60°,则线段CD长的取值范围为(  )
A.[2,+∞)B.[2C.[2
3
,+∞)
D.[2
3
,4]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱的九条棱都相等,三个侧面都是正方体,M、N分别是BC和A1C1的中点,求MN与CC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1
(Ⅱ)求证:AC1平面CDB1
(Ⅲ)若BB1=4,求CB1与平面AA1B1B所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


四棱锥S-ABCD的底面ABCD是正方形,侧棱SC的中点E在底面内的射影恰好是正方形ABCD的中心O,顶点A在截面SBD内的射影恰好是△SBD的重心G.
(1)求直线SO与底面ABCD所成角的正切值;
(2)设AB=a,求此四棱锥过点C,D,G的截面面积.

查看答案和解析>>

同步练习册答案