精英家教网 > 高中数学 > 题目详情
(1+
x
)
4
的展开式中,x的系数为 
 
分析:根据题意,(1+
x
)
4
的展开式为Tr+1=C4r
x
r;分析可得,r=2时,有x的项,将x=2代入可得答案.
解答:解:根据题意,(1+
x
)
4
的展开式为Tr+1=C4r
x
r
当r=2时,有T3=C42
x
2=6x;
故答案为:6.
点评:本题考查二项式系数的性质,特别要注意对x系数的化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线C1的参数方程为
x=2cos
y=2sin?-2
(?为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,C2的极坐标方程为ρcos(θ-
π
4
)=
2
,(余弦展开为+号,改题还是答案?)
(1)求曲线C1的极坐标方程及C2的直角坐标方程;
(2)点P为C1上任意一点,求P到C2距离的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,曲线C1的参数方程为
x=2cos
y=2sin?-2
(?为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,C2的极坐标方程为ρcos(θ-
π
4
)=
2
,(余弦展开为+号,改题还是答案?)
(1)求曲线C1的极坐标方程及C2的直角坐标方程;
(2)点P为C1上任意一点,求P到C2距离的取值范围.

查看答案和解析>>

同步练习册答案