精英家教网 > 高中数学 > 题目详情
2.已知扇形的圆心角为$\frac{2}{3}$π,面积为$\frac{25}{3}$π,则扇形的弧长为$\frac{10π}{3}$.

分析 扇形的弧长为l,圆心角大小为α(rad),半径为r,则扇形的面积为S=$\frac{1}{2}$lr=$\frac{1}{2}$r2α,由已知代入数据可解.

解答 解:∵α=$\frac{2}{3}$π,S=$\frac{25}{3}$π,
∴r=$\sqrt{\frac{2S}{α}}$=5,
∴l=rα=5×$\frac{2}{3}$π=$\frac{10π}{3}$.
故答案为:$\frac{10π}{3}$.

点评 本题主要考查了弧长公式,扇形的面积公式的应用,考查了转化扇形,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=ln(2x+3)+x2
(Ⅰ)讨论f(x)的单调性;          
(Ⅱ)求f(x)在区间[0,1]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin27°cos18°+cos27°sin18°的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:$\frac{x-1}{x+1}$≤0,命题q:(x-m)(x-m+3)≥0,m∈R,若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.定义:函数y=[x]为“下取整函数”,其中[x]表示不大于x的最大整数;函数y=<x>为“上取整函数”,其中<x>表示不小于x的最小整数;例如根据定义可得:[1.3]=1,[-1.3]=-2,<-2.3>=-2,<2.3>=3
(1)函数f(x)=<x•[x]>,x∈[-2,2];求$f({-\frac{3}{2}})$和$f({\frac{3}{2}})$;
(2)判断(1)中函数f(x)的奇偶性;
(3)试用分段函数的形式表示函数:y=[x]+<x>,(-1≤x≤1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆A:(x+2)2+y2=1,A(-2,0),B(2,0),分别求出满足下列条件的动点P的轨迹方程.
(1)△PAB的周长为10;
(2)圆P过B(2,0)且与圆A外切(P为动圆圆心).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为2:3:5,现按型号用分层抽样的方法随机抽出容量为n的样本,若抽到24件乙型产品,则n等于(  )
A.80B.70C.60D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$f(x)=\left\{\begin{array}{l}-{x^2}+4x+2\;\;x≤0\\{x^2}+2x+2\;\;\;\;x>0\end{array}\right.$,若不等式f(x+a)>f(2a-x)在[a-1,a]上恒成立,则实数a的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面 ABCD,且PA=AD=DB=$\frac{1}{2}$,AB=1,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求AC与PB所成的角;
(3)求平面AMC与平面BMC所成二面角的大小.

查看答案和解析>>

同步练习册答案