精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的准线过椭圆Cab0)的左焦点F,且点F到直线lc为椭圆焦距的一半)的距离为4.

1)求椭圆C的标准方程;

2)过点F做直线与椭圆C交于AB两点,PAB的中点,线段AB的中垂线交直线l于点Q.,求直线AB的方程.

【答案】1;(2.

【解析】

1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l的距离为4,求出即可;

2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.

1)抛物线的准线方程为

,直线,点F到直线l的距离为

所以椭圆的标准方程为

(2)依题意斜率不为0,又过点,设方程为

联立,消去得,

,设

线段AB的中垂线交直线l于点Q所以横坐标为3,

,平方整理得

解得(舍去),

所求的直线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:

根据该折线图可知,下列说法错误的是( )

A. 该超市2018年的12个月中的7月份的收益最高

B. 该超市2018年的12个月中的4月份的收益最低

C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益

D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校随机抽取100名考生的某次考试成绩,按照[7580),[8085),[8590),[9095),[95100](满分100分)分为5组,制成如图所示的频率分布直方图(假定每名学生的成绩均不低于75分).已知第3组,第4组,第5组的频数成等差数列;第1组,第5组,第4组的频率成等比数列.

1)求频率分布直方图中a的值,并估计抽取的100名学生成绩的中位数和平均数(同一组中的数据用该组区间的中点值作代表);

2)若从第3组、第4组、第5组中按分层抽样的方法抽取6人,并从中选出3人,求这3人中至少有1人来自第4组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为2的正方形,平面平面,且是线段的中点,过作直线是直线上一动点.

1)求证:

2)若直线上存在唯一一点使得直线与平面垂直,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱 ABCA1B1C1 中,AB 1 ,若二面角 C AB C1 的大小为 60°,则点 C 到平面 ABC1 的距离为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点P的极坐标为,直线l的极坐标方程为ρcosa,且点P在直线l.

1)求a的值及直线l的直角坐标方程;

2)曲线的极坐标方程为.交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点为椭圆上一点. 的重心为,内心为,且,则该椭圆的离心率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,不等式恒成立,求的最小值;

2)设数列,其前项和为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点,过A作两条不同直线,其中直线关于直线对称.

1)求抛物线E的方程及其准线方程;

2)设直线分别交抛物线E两点(均不与A重合),若以线段为直径的圆与抛物线E的准线相切,求直线的方程.

查看答案和解析>>

同步练习册答案