精英家教网 > 高中数学 > 题目详情

已知双曲线-y2=1的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.求直线A1P与A2Q交点的轨迹E的方程.

+y2=1,x≠0

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线C:y2=2x,O为坐标原点,经过点M(2,0)的直线l交抛物线于A,B两点,P为抛物线C上一点.
(Ⅰ)若直线l垂直于x轴,求||的值;
(Ⅱ)求三角形OAB的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>0,b>0)的离心率与双曲线=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin·x+cos·y-l=0相切(为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足(O为坐标原点),当时,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知⊙O′过定点A(0,p)(p>0),圆心O′在抛物线C:x2=2py(p>0)上运动,MN为圆O′在x轴上所截得的弦.

(1)当O′点运动时,|MN|是否有变化?并证明你的结论;
(2)当|OA|是|OM|与|ON|的等差中项时,试判断抛物线C的准线与圆O′的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.
(1)求椭圆C的标准方程;
(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A,B两点.
①若线段AB中点的横坐标为-,求斜率k的值;
②已知点M(-,0),求证:·为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,点在椭圆上.
(1)求椭圆C的方程;
(2)设椭圆的左右顶点分别是A、B,过点的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,∠F1PF2,且△PF1F2的面积为2,双曲线的离心率为2,求该双曲线的标准方程.

查看答案和解析>>

同步练习册答案