A. | 210 | B. | 245 | C. | 288 | D. | 2511 |
分析 根据幂函数的对应仄函数f(x)的解析式,然后利用取对数法和构造法,构造等比数列,然后利用累加法进行求解,求出数列的通项公式即可得到结论.
解答 解:∵幂函数f(x)=(m-1)xa的图象过点(9,3),
∴m-1=1,即m=2,此时f(x)=xa,
由f(9)=9a=3得32a=3,
则2a=1,即a=$\frac{1}{2}$,
则f(x)=${x}^{\frac{1}{2}}=\sqrt{x}$,
则a1=$\frac{m}{2}$=$\frac{2}{2}$=1,a2=m=2,
$\frac{{a}_{n}}{{a}_{n-1}}$=f($\frac{{a}_{n+1}}{{a}_{n}}$)=$\sqrt{\frac{{a}_{{n}_{+1}}}{{a}_{n}}}$,
等式两边取对数 lg$\frac{{a}_{n}}{{a}_{n-1}}$=lg$\sqrt{\frac{{a}_{{n}_{+1}}}{{a}_{n}}}$=$\frac{1}{2}$lg$\frac{{a}_{n+1}}{{a}_{n}}$,
则$\frac{lg\frac{{a}_{n+1}}{{a}_{n}}}{lg\frac{{a}_{n}}{{a}_{n-1}}}$=2,
则数列{lg$\frac{{a}_{n}}{{a}_{n-1}}$}是公比q=2的等比数列,
则lg$\frac{{a}_{n}}{{a}_{n-1}}$=2n-1lg2,
则$\frac{{a}_{n}}{{a}_{n-1}}$=${2}^{{2}^{n-1}}$,
则$\frac{{a}_{2}}{{a}_{1}}$=${2}^{{2}^{1}}$,$\frac{{a}_{3}}{{a}_{2}}$=${2}^{{2}^{2}}$,…$\frac{{a}_{n}}{{a}_{n-1}}$=${2}^{{2}^{n-1}}$,
等式两边同时相乘得$\frac{{a}_{n}}{{a}_{1}}$═${2}^{{2}^{1}}$•${2}^{{2}^{2}}$•…${2}^{{2}^{n-1}}$=${2}^{2+{2}^{2}+…{2}^{n-1}}$=${2}^{{2}^{n-1}-1}$,
即an=${2}^{{2}^{n-1}-1}$,
a10=${2}^{{2}^{9}-1}$=2511,
故选:D.
点评 本题主要考查幂函数的性质以及数列通项公式的求解,利用取对数法和构造法,累加法是解决本题的关键.综合考查学生的运算能力.
科目:高中数学 来源: 题型:选择题
A. | $x=\frac{5π}{12}$ | B. | $x=-\frac{π}{12}$ | C. | $x=-\frac{5π}{12}$ | D. | $x=\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$-i | B. | $\sqrt{3}$+i | C. | -$\sqrt{3}$-i | D. | -$\sqrt{3}$+i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com