精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是(  )
A.[﹣2,2]
B.
C.
D.

【答案】A
【解析】解:根据题意,函数f(x)= 的图象如图:

令g(x)=| +a|,其图象与x轴相交与点(﹣2a,0),
在区间(﹣∞,﹣2a)上为减函数,在(﹣2a,+∞)为增函数,
若不等式f(x)≥| +a|在R上恒成立,则函数f(x)的图象在
g(x)上的上方或相交,
则必有f(0)≥g(0),
即2≥|a|,
解可得﹣2≤a≤2,
故选:A.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥P﹣ABCD中,四边形ABCD为正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分别为PD,CD,AD的中点, =3

(1)证明:PB∥平面FMN;
(2)若PA=AB,求二面角E﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)过点( ,1),离心率为 ,直线l:y=k(x+1)与椭圆C相交于不同的两点A,B.
(1)求椭圆C的方程;
(2)在x轴上是否存在点M,使 + 是与k无关的常数?若存在,求出点M的坐标,并求出此常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,武汉市出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.武汉市环保部门就是否赞成禁放烟花爆竹,对400位老年人和中青年市民进行了随机问卷调查,结果如下表:

赞成禁放

不赞成禁放

合计

老年人

60

140

200

中青年人

80

120

200

合计

140

260

400

附:K2=

P(k2>k0

0.050

0.025

0.010

k0

3.841

5.024

6.635


(1)有多大的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关?请说明理由;
(2)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解他们春节期间在烟花爆竹上消费的情况.假设一位老年人花费500元,一位中青年人花费1000元,用X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=(  )
A.{2}
B.{1,2,4}
C.{1,2,4,6}
D.{1,2,3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(13分)
(I)求异面直线AP与BC所成角的余弦值;
(II)求证:PD⊥平面PBC;
(II)求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域内既是奇函数又是单调递增的函数是(
A.y=﹣
B.y=3x﹣3x
C.y=x|x|
D.y=x3﹣x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈(0, ).
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C经过点A(2,3)、B(4,0),对称轴为坐标轴,焦点F1、F2在x轴上.
(1)求椭圆C的方程;
(2)求∠F1AF2的角平分线所在的直线l与椭圆C的另一个交点的坐标.

查看答案和解析>>

同步练习册答案