精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=sin(x+φ)cosx的图象关于原点O(0,0)对称,试求函数f(x)的解析式.

分析 先根据f(x)的图象关于原点对称得到f(x)=-f(-x),再由两角和与差的正弦公式展开化简,即可得解函数的解析式.

解答 解:∵f(x)的图象关于原点对称,∴f(x)=-f(-x)恒成立,
即sin(x+φ)cosx=-sin(-x+φ)cos(-x)恒成立.
∴cosx[sin(x+φ)-sin(x-φ)]=0恒成立,
∴2cos2xsinφ=0恒成立.
∴sinφ=0,∴φ=kπ(k∈Z),
∴f(x)=sin(x+kπ)cosx=±$\frac{1}{2}$sin2x,(k∈Z).

点评 本题考查了三角形函数的性质,以及函数的奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.以下命题正确的有①.
①数列{an}的前n项和为Sn=n2+2n(n∈N+)则$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+…+$\frac{1}{{a}_{n}}$≥$\frac{1}{5}$;
②数列{an}满足a1=2,an+1=2an-1(n∈N+),则a11=1023;
③数列{an}满足an+1=1-$\frac{1}{4{a}_{n}}$,bn=$\frac{2}{2{a}_{n}-1}$(n∈N+),则{bn}是从第二项起的等比数列;
④已知a1+3a2+5a3+…+(2n-1)an=2n+1(n∈N+),则an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(t)=t+$\frac{1}{t}$,则
(1)f(t)=t+$\frac{1}{t}$在[$\frac{1}{3}$,1]内的最大值和最小值分别是多少?
(2)f(t)=t+$\frac{1}{t}$在[$\frac{1}{3}$,4]内的最大值和最小值分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若x∈[-$\frac{π}{3}$,$\frac{π}{4}$],求函数y=$\frac{1}{co{s}^{2}x}$+2tanx+1的最值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}前n项和为Sn,a1=1,对任意的正整数m,n(m<n)都有Sn-Sm=2mSn-m恒成立,则a10的值为29

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sin75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,求cos15°,cos165°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=g(x)的图象过点(4,5),且在R上单调递增.若函数f(x)=$\left\{\begin{array}{l}{{g}^{-1}(x+2)(x≥3)}\\{(a-1)x+1(x<3)}\end{array}\right.$存在反函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\underset{lim}{n→∞}$an=3,$\underset{lim}{n→∞}$bn=$\frac{1}{3}$,则$\underset{lim}{n→∞}$$\frac{{a}_{n}-3{b}_{n}}{2{a}_{n}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a,b∈N*,记R(a\b)为a除以b所得的余数,执行如图所示的程序框图,若输入a=243,b=45,则输出的值等于(  )
A.0B.1C.9D.18

查看答案和解析>>

同步练习册答案