精英家教网 > 高中数学 > 题目详情

如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.

(1)求证:F<0;

(2)若四边形ABCD的面积为8,对角线AC的长为2,且=0,求D2+E2-4F的值;

(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.

(1)方法一:由题意,原点O必定在圆M内,即点(0,0)代入方程x2+y2+Dx+Ey+F=0的左边所得的值小于0,于是有F<0,即证.

方法二:由题意,不难发现A、C两点分别在x轴正、负半轴上.设两点坐标分别为A(a,0),C(c,0),则有ac<0.对于圆的方程x2+y2+Dx+Ey+F=0,当y=0时,可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,于是有xAxC=ac=F.因为ac<0,故F<0.

(2)不难发现,对角线互相垂直的四边形ABCD的面积

S=,因为S=8,

|AC|=2,可得|BD|=8.

又因为=0,所以∠BAD为直角,又因为四边形是圆M的内接四边形,故|BD|=2r=8⇒r=4.

对于方程x2+y2+Dx+Ey+F=0所表示的圆,

可知-F=r2,所以D2+E2-4F=4r2=64.

(3)设四边形四个顶点的坐标分别为A(a,0),B(0,b),C(c,0),D(0,d).

则可得点G的坐标为(),即=().

=(-a,b),且AB⊥OH,故要使G、O、H三点共线,只需证=0即可.

,且对于圆M的一般方程x2+y2+Dx+Ey+F=0,

当y=0时可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,

于是有xAxC=ac=F.

同理,当x=0时,可得y2+Ey+F=0,其中方程的两根分别为点B和点D的纵坐标,于是有yByD=bd=F.

所以,=0,即AB⊥OG.

故O、G、H三点必定共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,点P是线段OB及线段AB延长线所围成的阴影区域(含边界)的任意一点,且
OP
=x
OA
+y
OB
则在直角坐标平面内,实数对(x,y)所示的区域在直线y=4的下侧部分的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标中,一定长m的线段,其端点AB分别在x轴、y轴上滑动,设点M满足(λ是大于0,且不等于1的常数).

试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案